首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   13篇
  2019年   1篇
  2018年   5篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   7篇
  2012年   5篇
  2011年   12篇
  2010年   4篇
  2009年   2篇
  2008年   10篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   8篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
排序方式: 共有113条查询结果,搜索用时 51 毫秒
81.
Yoon SL  Kim DC  Cho SH  Lee SY  Chu IS  Heo J  Leem SH 《BMB reports》2010,43(10):698-703
In this study, we characterized two blocks of minisatellites in the 5' upstream region of the BORIS gene (BORIS-MS1, -MS2). BORIS-MS2 was found to be polymorphic; therefore, this locus could be useful as a marker for DNA fingerprinting. We assessed the association between BORIS-MS2 and breast cancer by a case-control study with 428 controls and 793 breast cancers cases. Rare alleles in the younger group (age, <40) were associated with a statistically significant increased risk of breast cancer (odds ratio, 4.84; 95% confidence interval, 1.06-22.22; and P = 0.026). A statistically significant association between the short rare alleles and cancer was identified in the younger group (8.02; 1.01-63.83; P = 0.021). Kaplan-Meier estimates showed that poor prognosis was associated with patients who contained the rare alleles. Our data suggest that the short rare alleles of BORIS-MS2 could be used to identify the risk for breast cancer in young patients.  相似文献   
82.
The SLC6A19 is a human homolog of B0AT1 that encodes a neutral amino acid transporter. We examined the distribution of VNTR (variable number of tandem repeats; minisatellites) and conducted polymorphic analysis of SCL6A19 isolated from the genomic DNA of controls and multi-generational families. The SLC6A19 was found to contain seven blocks of minisatellites, 3 of which (SLC6A19-MS1, -MS4, and -MS7) showed polymorphism and were found to be transmitted through meiosis following Mendelian inheritance in seven families. These minisatellite polymorphisms may be useful markers for paternity mapping and DNA fingerprinting. Furthermore, we conducted a case-control study in which genomic DNA from 400 controls and 205 cases with essential hypertension was compared. A statistically significant association was identified between rare SLC6A19-MS7 alleles and the occurrence of hypertension (odds ratio, 7.87; 95% confidence interval, 0.88-70.66; and p = 0.028). These findings suggest that the rare SLC6A19-MS7 allele may be a risk factor for hypertension.  相似文献   
83.
We determined the effects of yolk water-soluble protein (YSP) on bone resorption. YSP potently suppressed osteoclastogenesis from bone marrow-derived precursor cells driven by tumor necrosis factor-alpha (TNF-alpha). YSP (200 microg/ml) abolished the formation of tartarate-resistant acid phosphatase (TRAP)-positive osteoclasts. Furthermore, TNF-alpha induced TRAP activity was greatly inhibited by YSP (100 microg/ml) treatment. Our results suggest that YSP has therapeutic potential for bone-erosive diseases.  相似文献   
84.
Kim SI  Kim JY  Yun SH  Kim JH  Leem SH  Lee C 《Proteomics》2004,4(11):3610-3621
Pseudomonas sp. K82 is a soil bacterium that can degrade and use monocyclic aromatic compounds including aniline, 3-methylaniline, 4-methylaniline, benzoate and p-hydroxybenzoate as its sole carbon and energy sources. In order to understand the impact of these aromatic compounds on metabolic pathways in Pseudomonas sp. K82, proteomes obtained from cultures exposed to different substrates were displayed by two-dimensional gel electrophoresis and were compared to search for differentially induced metabolic enzymes. Column separations of active fractions were performed to identify major biodegradation enzymes. More than thirty proteins involved in biodegradation and other types of metabolism were identified by electrospray ionization-quadrupole time of flight mass spectrometry. The proteome analysis suggested that Pseudomonas sp. K82 has three main metabolic pathways to degrade these aromatic compounds and induces specific metabolic pathways for each compound. The catechol 2,3-dioxygenase (CD2,3) pathway was the major pathway and the catechol 1,2-dioxygenase (beta-ketoadipate) pathway was the secondary pathway induced by aniline (aniline analogues) exposure. On the other hand, the catechol 1,2-dioxygenase pathway was the major pathway induced by benzoate exposure. For the degradation of p-hydroxybenzoate, the protocatechuate 4,5-dioxygenase pathway was the major degradation pathway induced. The nuclear magnetic resonance analysis of substrates demonstrated that Pseudomonas sp. K82 metabolizes some aromatic compounds more rapidly than others (benzoate > p-hydroxybenzoate > aniline) and that when combined, p-hydroxybenzoate metabolism is repressed by the presence of benzoate or aniline. These results suggest that proteome analysis can be useful in the high throughput study of bacterial metabolic pathways, including that of biodegradation, and that inter-relationships exist with respect to the metabolic pathways of aromatic compounds in Pseudomonas sp. K82.  相似文献   
85.
86.
Ciclopirox olamine is a synthetic antifungal agent with a high affinity for trivalent metal cations. Ciclopirox olamine can be used to synchronize mammalian cells, but its mechanism of action is not understood well. In this study, we investigated the effect of ciclopirox olamine in yeast cells and used a genetic approach to identify potential ciclopirox olamine targets in yeast. Wild type strains of the yeast Saccharomyces cerevisiae were weakly sensitive to ciclopirox olamine, but high concentrations of the drug arrested their growth at many different stages. MMS-mutagenized yeast clones were screened for increased sensitivity to ciclopirox olamine. Fourteen mutants, cos101-cos114, were identified and characterized. The targets of ciclopirox olamine in S. cerevisiae appear to include multiple proteins that participate in various components of cellular metabolism, including DNA replication, DNA repair, and cellular transport. Three genes were cloned: a Fe/Cu reductase (FRE1/COS107), an oxidative stress response gene (YAP1/COS110), and a gene involved in signal transduction (YBR203W/COS111). These results suggest that CPO inhibits multiple aspects of cell growth and metabolism, possibly via multiple targets.  相似文献   
87.
It is often assumed that pH(i) is spatially uniform within cells. A double-barreled microperfusion system was used to apply solutions of weak acid (acetic acid, CO(2)) or base (ammonia) to localized regions of an isolated ventricular myocyte (guinea pig). A stable, longitudinal pH(i) gradient (up to 1 pH(i) unit) was observed (using confocal imaging of SNARF-1 fluorescence). Changing the fractional exposure of the cell to weak acid/base altered the gradient, as did changing the concentration and type of weak acid/base applied. A diffusion-reaction computational model accurately simulated this behavior of pH(i). The model assumes that H(i)(+) movement occurs via diffusive shuttling on mobile buffers, with little free H(+) diffusion. The average diffusion constant for mobile buffer was estimated as 33 x 10(-7) cm(2)/s, consistent with an apparent H(i)(+) diffusion coefficient, D(H)(app), of 14.4 x 10(-7) cm(2)/s (at pH(i) 7.07), a value two orders of magnitude lower than for H(+) ions in water but similar to that estimated recently from local acid injection via a cell-attached glass micropipette. We conclude that, because H(i)(+) mobility is so low, an extracellular concentration gradient of permeant weak acid readily induces pH(i) nonuniformity. Similar concentration gradients for weak acid (e.g., CO(2)) occur across border zones during regional myocardial ischemia, raising the possibility of steep pH(i) gradients within the heart under some pathophysiological conditions.  相似文献   
88.
Human artificial chromosomes (HACs) provide a unique opportunity to study kinetochore formation and to develop a new generation of vectors with potential in gene therapy. An investigation into the structural and the functional relationship in centromeric tandem repeats in HACs requires the ability to manipulate repeat substructure efficiently. We describe here a new method to rapidly amplify human alphoid tandem repeats of a few hundred base pairs into long DNA arrays up to 120 kb. The method includes rolling-circle amplification (RCA) of repeats in vitro and assembly of the RCA products by in vivo recombination in yeast. The synthetic arrays are competent in HAC formation when transformed into human cells. As short multimers can be easily modified before amplification, this new technique can identify repeat monomer regions critical for kinetochore seeding. The method may have more general application in elucidating the role of other tandem repeats in chromosome organization and dynamics.  相似文献   
89.
Most previous stress-immune research focused on the immunosuppressive effects of stress on acquired immunity. More recently, it has become clear that acute stressor exposure can potentiate innate, as well as suppress acquired, immunity. For example, acute stress improves recovery from bacterial inflammation, a classic in vivo measure of innate immunity. The previous work was done in sedentary organisms. Physical activity status can modulate the impact of stress on immune function. The following studies tested the hypothesis that the effect of stress on inflammation after subcutaneous challenge with bacteria (Escherichia coli) is facilitated by physical activity. The results were that sedentary, stressed rats resolved their inflammation 1-2 days faster and have increased circulating neutrophils compared with their nonstressed, sedentary counterparts. In contrast, physically active, stressed rats resolve their inflammation 3-4 days faster and have increased circulating and inflammatory site neutrophils compared with their nonstressed counterparts. Importantly, the beneficial impact of stress on inflammation recovery and neutrophil migration was greater in the physically active, than sedentary, stressed rats. Thus physical activity status facilitates the positive effect of acute stress on innate immunity.  相似文献   
90.
Trametes versicolor, a white-rot basidiomycete, degrades cellulose and lignin as well as many recalcitrant chemicals. There have been many reports about the cloning of laccase and peroxidase genes of T. versicolor which are involved in lignin degradation. In order to analyze a gene function and introduce foreign genes into an organism, genetic transformation is required. Here we have successfully transformed T. versicolor to hygromycin B resistance using pAN 7-1 plasmid by restriction enzyme mediated integration and have obtained many mutants in peroxidase activity and growing patterns. The transformation frequency was 25-50 transformants (microg plasmid DNA)(-1). The transformants were quite stable after 10 consecutive transfers in non-selectable medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号