首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   34篇
  2024年   3篇
  2023年   8篇
  2022年   4篇
  2021年   18篇
  2020年   15篇
  2019年   20篇
  2018年   10篇
  2017年   9篇
  2016年   27篇
  2015年   38篇
  2014年   34篇
  2013年   53篇
  2012年   49篇
  2011年   68篇
  2010年   38篇
  2009年   31篇
  2008年   42篇
  2007年   33篇
  2006年   30篇
  2005年   29篇
  2004年   34篇
  2003年   34篇
  2002年   32篇
  2001年   6篇
  2000年   10篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有714条查询结果,搜索用时 265 毫秒
101.

Purpose

The objective was to provide comprehensive life cycle inventories for the construction and renovation of sewers. A detailed inventory was provided with multiple options of pipe materials, diameters and site-specific characteristics, and was embedded into the Excel®-based tool SewerLCA. The tool allows for life cycle evaluation of different sewers. It was applied to determine the most important phases, processes, and related parameters involved in the construction and renovation of sewers from an environmental and economical perspective.

Methods

Comprehensive life cycle inventories (LCIs) for sewers construction and renovation were obtained by first identifying all processes involved after interviewing construction experts and reviewing sewer construction budgets from a Catalan company; and second transforming the processes into masses of materials and energy usage using construction databases. In order to run the life cycle impact assessment (LCIA) the materials and energy typologies from the inventories were matched to their corresponding equivalents into available LCI databases. Afterwards the potential impacts were calculated through the use of LCIA characterization factors from ReCiPe. Life cycle assessment (LCA) was run several times to assess the construction of a 1-km-long sewer with varying pipe materials, life spans for each material, diameters, transport distances, site-specific characteristics, and pipe deposition options.

Results and discussion

The environmental impacts generated by construction and renovation of a 1 km Polyvinylchloride (PVC) pipe with a diameter of 40 cm are mainly associated with pipe laying and backfilling of the trench. The evaluation of several pipe materials and diameters shows that the exclusion of renovation would underestimate the impacts by 38 to 82 % depending on the pipe materials and diameters. Including end-of-life phase for plastic pipe materials increases climate change (up to an extra 71 %) and human toxicity (up to an extra 147 %) impacts (among all diameters). The preferred pipe materials from an environmental point of view are precast concrete and High-Density Polyethylene (HDPE). Site-specific characteristics (specially the presence of rocky soil and asphalt placement) and material life span have a high influence on the overall environmental profile, whereas changes in transport distances have only a minor impact (<4 %).

Conclusions

Environmental impacts during the construction and renovation of sewers are subject to differences in material type, site-specific characteristics and material life span. Renovation of sewers has a large influence on all potential environmental impacts and costs and, hence, should not be omitted in LCA studies. The treatment and disposal processes of plastic pipes at the end of their life has to be accounted in LCA studies.
  相似文献   
102.
Cholesterol efflux from membranes promotes acrosome reaction in goat spermatozoa. In 1 h of incubation of sperm in the presence of beta-cyclodextrin (beta CD), all the interchangeable cholesterol is desorbed from sperm membranes, although acrosome reaction is fully accomplished only after 3-4 h of incubation, as previously published. In the present paper we investigate the effect of cholesterol removal from mature goat spermatozoa on the overall membrane "fluidity" of live cell membranes and of liposomes from sperm lipid extracts. Using steady state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), we studied the average thermotropic behaviour of membrane lipids, after incubation of live sperm for 1 h in BSA-free medium with the presence/absence of 8 mM beta-cyclodextrin, as a cholesterol acceptor. Unimodal and bimodal theoretical sigmoids fitted best to the experimental thermotropic profiles of liposomes and whole cells, respectively. In the case of whole sperm, two phase transitions, attributable to different lipid domains, were clearly separated by using the fitting parameters. After cholesterol removal, important changes in the relative anisotropy range of the two transitions were found, indicating an increase in the "fluidity" of some of the lipid microdomains of sperm membranes. These changes in sperm lipid dynamics are produced before the onset of sperm acrosome reaction.  相似文献   
103.
Chick embryo spinal cord motoneurons develop a trophic response to some neurotrophins when they are maintained in culture in the presence of muscle extract. Thus, after 2 days in culture, brain-derived neurotrophic factor (BDNF) promotes motoneuron survival. In the present study we have analyzed the intracellular pathways that may be involved in the BDNF-induced motoneuron survival. We have observed that BDNF activated the extracellular-regulated kinase (ERK) mitogen-activated protein (MAP) kinase and the phosphatidylinositol (PI) 3-kinase pathways. To examine the contribution of these pathways to the survival effect triggered by BDNF, we used PD 98059, a specific inhibitor of MAP kinase kinase, and LY 294002, a selective inhibitor of PI 3-kinase. PD 98059, at doses that significantly reduced the phosphorylation of ERKs, did not show any prominent effect on neuronal survival. However, LY 294002 at doses that inhibited the phosphorylation of Akt, a down-stream element of the PI 3-kinase, completely abolished the motoneuron survival effects of BDNF. Moreover, cell death triggered by LY 294002 treatment exhibited features similar to those observed after muscle extract deprivation. Our results suggest that the PI 3-kinase pathway plays an important role in the survival effect triggered by BDNF on motoneurons, whereas activation of the ERK MAP kinase pathway is not relevant.  相似文献   
104.
Ricinus communis is one of the major commercial non-edible oilseed crops grown in semiarid and arid environments worldwide and is reported as a drought tolerant species. Surprisingly, little is known about the mechanisms achieving this tolerance, especially in relation to photoprotection. The aim of this study was to analyze the association of the regulation of the photosynthetic electron transport and photoprotective mechanisms with drought tolerance in R. communis. Drought induced decreases in the relative water content, water potential and growth in R. communis exposed to 9 days of drought. After 6 days of rehydration, these parameters were completely recovered, demonstrating a potential of drought tolerance in this species. In addition, drought inhibited photosynthesis by stomatal and metabolic limitations (V cmax, J max, and Rubisco activity), with partial recovery after rehydration. Leaves displayed transient photoinhibition after 6 days of drought, which was completely recovered after 6 days of dehydration. The effective quantum yields and the electron transport rates of PSII and PSI were modulated to face drought avoiding the excess energy produced by decreases in CO2 assimilation. NPQ was increased during drought, and it was maintained higher than control after the recovery treatment. In addition, the estimated cyclic electron flow was induced under drought and decreased after recovery. Photorespiration was also increased under drought and maintained at higher levels after the recovery treatment. Furthermore, antioxidative enzymes activities (SOD, APX, and CAT) were increased under drought to avoid ROS harmful effects. Altogether, we clearly showed that the modulation of photoprotective mechanisms and antioxidant enzymes are crucial to this species under drought. The implication of these strikingly strategies to drought tolerance is discussed in relation to agricultural and natural systems.  相似文献   
105.
We aimed to study the role of an insertion/deletion polymorphism in the Pepsinogen C (PGC) gene in the clinical outcome of 172 breast cancer patients. The six polymorphic alleles were amplified using PCR. Our results indicate that patients carrying the allele 6 present a higher 5-year survival mean (83.4% of 6 allele carriers were alive at 5 years vs. only 68.6% of noncarriers, p=0.001), suggesting a role for this polymorphism in the outcome of breast cancer patients. We hypothesize that PGC polymorphism can be a predictive biomarker in breast cancer, contributing to an individual profile of great interest in clinical oncology.  相似文献   
106.
The inhibition mechanisms of the firefly luciferase (Luc) by the two major products of the reactions catalysed by Luc, oxyluciferin and dehydroluciferyl-adenylate (L-AMP), were investigated. Light production in the presence and absence of these inhibitors (0.5 to 2 muM oxyluciferin; 0.0025 to 1.25 muM L-AMP) has been measured in 50 mM Hepes buffer (pH = 7.5), 10 nM Luc, 250 muM ATP and d-Luciferin (from 3.75 up to 120 muM). Nonlinear regression analysis with the appropriate kinetic models (Henri-Michaelis-Menten and William-Morrison equations) reveals that oxyluciferin is a competitive inhibitor of luciferase (K(i) = 0.50 +/- 0.03 muM) while L-AMP act as a tight-binding competitive inhibitor (K(i) = 3.8 +/- 0.7 nM). The K(m) values obtained both for oxyluciferin and L-AMP were 14.7 +/- 0.7 and 14.9 +/- 0.2 muM, respectively. L-AMP is a stronger inhibitor of Luc than oxyluciferin and the major responsible for the characteristic flash profile of in vitro Luc bioluminescence.  相似文献   
107.
108.
Seedling establishment is a critical process to crop productivity, especially under saline conditions. This work was carried out to investigate the hypothesis that reserve mobilization is coordinated with salt-induced inhibition of seedling growth due to changes in source-sink relations. To test this hypothesis, cashew nuts (Anacardium occidentale) were sown in vermiculite irrigated daily with distilled water (control) or 50mM NaCl and they were evaluated at discrete developmental stages from the seed germination until the whole seedling establishment. The salt treatment coordinately delayed the seedling growth and the cotyledonary reserve mobilization. However, these effects were more pronounced at late seedling establishment than in earlier stages. The storage protein mobilization was affected by salt stress before the lipid and starch breakdown. The globulin fraction represented the most important storage proteins of cashew cotyledons, and its mobilization was markedly delayed by NaCl along the seedling establishment. Free amino acids were mostly retained in the cotyledons of salt-treated seedlings when the mobilization of storage proteins, lipids and starch was strongly delayed. Proline was not considerably accumulated in the cotyledons of cashew seedlings as a response to NaCl salinity. According to these results it is noteworthy that the salt-induced inhibition of seedling growth is narrowly coordinated with the delay of reserve mobilization and the accumulation of hydrolysis products in cotyledons. Also, it was evidenced that free amino acids, especially those related to nitrogen transport, are potential signals involved in the regulation of storage protein hydrolysis during cashew seedling establishment under NaCl salinity.  相似文献   
109.
A foundational study assessed effects of biochemical pathway introduction into poplar to produce eugenol, chavicol, p‐anol, isoeugenol and their sequestered storage products, from potentially available substrates, coniferyl and p‐coumaryl alcohols. At the onset, it was unknown whether significant carbon flux to monolignols vs. other phenylpropanoid (acetate) pathway metabolites would be kinetically favoured. Various transgenic poplar lines generated eugenol and chavicol glucosides in ca. 0.45% (~0.35 and ~0.1%, respectively) of dry weight foliage tissue in field trials, as well as their corresponding aglycones in trace amounts. There were only traces of any of these metabolites in branch tissues, even after ~4‐year field trials. Levels of bioproduct accumulation in foliage plateaued, even at the lowest introduced gene expression levels, suggesting limited monolignol substrate availability. Nevertheless, this level still allows foliage collection for platform chemical production, with the remaining (stem) biomass available for wood, pulp/paper and bioenergy product purposes. Several transformed lines displayed unexpected precocious flowering after 4‐year field trial growth. This necessitated terminating (felling) these particular plants, as USDA APHIS prohibits the possibility of their interacting (cross‐pollination, etc.) with wild‐type (native plant) lines. In future, additional biotechnological approaches can be employed (e.g. gene editing) to produce sterile plant lines, to avoid such complications. While increased gene expression did not increase target bioproduct accumulation, the exciting possibility now exists of significantly increasing their amounts (e.g. 10‐ to 40‐fold plus) in foliage and stems via systematic deployment of numerous ‘omics’, systems biology, synthetic biology and metabolic flux modelling approaches.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号