首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2217篇
  免费   164篇
  国内免费   217篇
  2024年   3篇
  2023年   28篇
  2022年   53篇
  2021年   149篇
  2020年   91篇
  2019年   120篇
  2018年   122篇
  2017年   75篇
  2016年   99篇
  2015年   113篇
  2014年   176篇
  2013年   179篇
  2012年   198篇
  2011年   188篇
  2010年   115篇
  2009年   96篇
  2008年   113篇
  2007年   85篇
  2006年   62篇
  2005年   69篇
  2004年   54篇
  2003年   65篇
  2002年   41篇
  2001年   26篇
  2000年   19篇
  1999年   39篇
  1998年   20篇
  1997年   24篇
  1996年   22篇
  1995年   16篇
  1994年   21篇
  1993年   10篇
  1992年   11篇
  1991年   25篇
  1990年   11篇
  1989年   13篇
  1988年   8篇
  1987年   7篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1973年   1篇
  1965年   1篇
排序方式: 共有2598条查询结果,搜索用时 46 毫秒
141.
Hypocotyl elongation is an early event in plant growth and development and is sensitive to fluctuations in light, temperature, water potential and nutrients. Most research on hypocotyl elongation has focused on the regulatory mechanism of a single environment factor. However, information about combined effects of multi‐environment factors remains unavailable, and overlapping sites of the environmental factors signaling pathways in the regulation of hypocotyl elongation remain unclear. To identify how cross‐talks among light intensity, temperature and water potential regulate hypocotyl elongation in Brassica rapa L. ssp. chinesis, a comprehensive isobaric tag for relative and absolute quantitation‐based proteomic approach was adopted. In total, 7259 proteins were quantified, and 378 differentially expressed proteins (DEPs) were responsive to all three environmental factors. The DEPs were involved in a variety of biochemical processes, including signal transduction, cytoskeletal organization, carbohydrate metabolism, cell wall organization, protein modification and transport. The DEPs did not function in isolation, but acted in a large and complex interaction network to affect hypocotyl elongation. Among the DEPs, phyB was outstanding for its significant fold change in quantity and complex interaction networks with other proteins. In addition, changes of sensitivity to environmental factors in phyB‐9 suggested a key role in the regulation of hypocotyl elongation. Overall, the data presented in this study show a profile of proteins interaction network in response to light intensity, temperature and water potential and provides molecular basis of hypocotyl elongation in B. rapa.  相似文献   
142.
Ligularia dalaolingensis, a new species from Hubei and Hunan, China, is described and illustrated. It belongs to L. sect. Ligularia ser. Speciosae on the basis of its palmate leaf venation, racemose synflorescence and pappus which is slightly shorter than the tube of the tubular corolla. In the series, its closest relatives are assumed to be L. fischeri and L. stenocephala. From L. fischeri, L. dalaolingensis is readily distinguished by smaller basal leaves, shorter synflorescence, narrower involucres and fewer phyllaries and florets; from L. stenocephala, L. dalaolingensis differs by smaller basal leaves, shorter synflorescence as well as broader bracts. A diagnostic key to Chinese species of L. ser. Speciosae with broadly ovate, ovate or ovate‐lanceolate bracts is provided.  相似文献   
143.
Zhao  Beiyu  Liu  Peng  Wei  Meng  Li  Yanbo  Liu  Jie  Ma  Louyan  Shang  Suhang  Jiang  Yu  Huo  Kang  Wang  Jin  Qu  Qiumin 《Neurochemical research》2019,44(4):859-873

Amyloid-β (Aβ) plays an important role in Alzheimer’s disease (AD) pathogenesis, and growing evidence has shown that poor sleep quality is one of the risk factors for AD, but the mechanisms of sleep deprivation leading to AD have still not been fully demonstrated. In the present study, we used wild-type (WT) rats to determine the effects of chronic sleep restriction (CSR) on Aβ accumulation. We found that CSR-21d rats had learning and memory functional decline in the Morris water maze (MWM) test. Meanwhile, Aβ42 deposition in the hippocampus and the prefrontal cortex was high after a 21-day sleep restriction. Moreover, compared with the control rats, CSR rats had increased expression of β-site APP-cleaving enzyme 1 (BACE1) and sAPPβ and decreased sAPPα levels in both the hippocampus and the prefrontal cortex, and the BACE1 level was positively correlated with the Aβ42 level. Additionally, in CSR-21d rats, low-density lipoprotein receptor-related protein 1 (LRP-1) levels were low, while receptor of advanced glycation end products (RAGE) levels were high in the hippocampus and the prefrontal cortex, and these transporters were significantly correlated with Aβ42 levels. In addition, CSR-21d rats had decreased plasma Aβ42 levels and soluble LRP1 (sLRP1) levels compared with the control rats. Altogether, this study demonstrated that 21 days of CSR could lead to brain Aβ accumulation in WT rats. The underlying mechanisms may be related to increased Aβ production via upregulation of the BACE1 pathway and disrupted Aβ clearance affecting brain and peripheral Aβ transport.

  相似文献   
144.
145.
146.
Yao  Chentao  Zhang  Fengwen  Sun  Xiao  Shang  Dianlong  He  Falin  Li  Xiangdong  Zhang  Jiwang  Jiang  Xingyin 《Journal of Plant Growth Regulation》2019,38(4):1300-1313

The objective of this study was to evaluate the ability of the phytohormone S-abscisic acid (S-ABA) to protect maize seedlings grown under drought stress and to measure their increased drought tolerance. The maize hybrids ‘Zhengdan 958’ (ZD958; drought tolerant) and ‘Xundan 20’ (XD20; drought sensitive) were treated with nutrient solutions of different concentrations (1, 2, 4, 8, and 10 mg/kg) of S-ABA under polyethylene glycol (PEG, 15% w/v, MW 6000) simulated drought stress. Optimal concentrations of S-ABA were designed to be sprayed onto the leaves of seedlings, and their effect on endogenous ABA, malondialdehyde (MDA), osmotic substances, antioxidant enzyme activities, and Asr1 gene expression in seedlings were studied. Results indicated that, under drought stress, S-ABA treatment significantly improved maize seed germination rate (GR), germination energy (GE), and seedling biomass (p < 0.05). After spraying 4 mg/kg S-ABA onto leaves, the endogenous hormone ABA, osmotic substances, antioxidant enzyme activities, and expressive quantity of the Asr1 gene were extended and MDA content dropped significantly (p < 0.05). Moreover, ZD 958 endogenous ABA content, osmotic substances content, antioxidant enzyme activity and Asr1 gene expressive quantity were higher than that of XD 20 (p < 0.05). In conclusion, S-ABA treatment increased the content of endogenous ABA, induced an increase in antioxidant enzyme activity and Asr1 gene expression level, reduced the oxidative damage caused by drought to maize leaves, and improved the adaptability of maize seedlings to withstand drought stress. The promoting effect of S-ABA on the drought-tolerant variety ZD 958 was more obvious (p < 0.05). These results serve as a reference for the use of S-ABA in mitigating drought stress in maize.

  相似文献   
147.
Epidemiological studies showed that isoflurane, a general anesthetic widely used in surgery including those for the children, is associated with impairment of neurodevelopment and neurodegenerative diseases, such as Alzheimer’s disease (AD) and age-related macular degeneration (AMD), which are related to the accumulation of reactive oxygen species (ROS). Astragaloside (AS) is an antioxidant derivative from a traditional Chinese herbal medicine Astragalus membraneaceus Bunge. In this study, we used retinal pigment epithelial cells, which share plenty of features with neurodegenerative diseases such as AD and AMD to investigate the effect of AS. Cell cycle re-entry and proapoptosis were seen in retinal pigment epithelium (RPE) cells treated with isoflurane, which was alleviated by pretreatment of AS. Further, tumor necrosis factor receptor-associated factor 5 (TRAF5) and downstream nuclear factor-κB (NF-κB) were investigated to elucidate the molecular mechanism underlying protective effect of AS. RPE cells exposed to isoflurane expressed higher TRAF5 and NF-κB than those pretreated with AS, suggesting a critical role of TRAF5 therein. In Morris water maze (MWM) assay, Sprague-Dawley rats pretreated with AS and then exposed to isoflurane spent less time in swimming to the platform, and their TRAF5 expression was significantly lower than those received anesthesia alone. Further studies on the consequence of forced downregulation or upregulation are warranted that may employ cutting-edge technologies such as optogenetics to overcome the difficulties in manipulating expression of TRAF5. Although the link between TRAF5 and neurodegeneration requires more in-depth investigations, our study provide a novel hint on the pathological mechanism of isoflurane and suggest a potential target for eliminating persistent side effect of anesthesia.  相似文献   
148.
Laminins are a family of extracellular matrix glycoproteins involved in cell adhesion and migration. A major obstacle to understanding their structure-function relationships is the lack of small laminin domains capable of replicating integrin-binding, cell-adhesive, and migratory functions of the intact molecule. Here, we show that the recombinant LG3 (rLG3) module (26 kDa) of laminin-5 (Ln-5) alpha(3) chain replicated key Ln-5 activities. rLG3 but not rLG1 or rLG2 supported cell adhesion and migration of at least two distinct cell lines, in an integrin alpha(3)beta(1)-dependent manner. Cell adhesion to rLG3 was regulated by divalent cations and accompanied by cell spreading and tyrosine phosphorylation of FAK focal adhesion kinase. The integrin binding activity of rLG3 was confirmed by rLG3 affinity chromatography of detergent cell lysates, which resulted in specific purification of integrin alpha(3)beta(1). To our knowledge, this is the first report directly demonstrating that a recombinant laminin LG module is an active domain capable of supporting integrin-dependent cell adhesion and migration.  相似文献   
149.
We have constructed a chimeric protein composed of the receptor binding and membrane translocation domains of Pseudomonas exotoxin A (PE) with the outer membrane proteins I and F, together designated as PEIF. The potential of PEIF as a vaccine against Pseudomonas infection was evaluated in BALB/c mice and New Zealand white rabbits. We examined titers of anti-PE and anti-OprF antibodies, and the ability both to neutralize PE cytotoxicity and to increase opsonophagocytic uptake of Pseudomonas aeruginosa strain PAO1, serogroups 2 and 6. The results showed that PEIF can induce antibodies not only to neutralize the PE cytotoxicity but also to promote the uptake of various strains of P. aeruginosa by murine peritoneal macrophages. In a burned mouse model, PEIF afforded significant protection against infection by the homologous P. aeruginosa strain PAO1, heterologous serogroup 2, and the PE hyperproducing strain PA103. These observations thus indicate that PEIF may be used as a novel vaccine against P. aeruginosa infection. Received: 10 March 1999 / Received revision: 21 April 1999 / Accepted: 16 May 1999  相似文献   
150.
Bacillus cereus UW85 suppresses seedling damping-off diseases caused by Oomycetes and produces antibiotics that inhibit development of Oomycetes in culture. The goal of this study was to determine how UW85 and its antibiotics affected the behavior of an Oomycete, Pythium torulosum, in its interaction with plant roots. We studied tobacco seedlings inoculated with zoospores of P. torulosum and UW85 culture, culture filtrate, washed cells, antibiotics (zwittermicin A or kanosamine), purified from cultures of UW85, and UW030, a mutant of UW85 that does not suppress disease and does not produce the antibiotics. Microscopic observation revealed that all of the treatments inhibited zoospore activity around roots and encystment on roots. Treatment with UW85 culture, culture filtrate, zwittermicin A, or kanosamine delayed cyst germination and the elongation rate of germ tubes, whereas treatment with UW030 or washed UW85 cells did not. In an in vitro seedling bioassay of disease suppression, the antibiotics, zwittermicin A and kanosamine, suppressed disease singly or together, although UW85 culture suppressed disease more effectively than did the antibiotics. The results show that B. cereus cultures affect zoospore behavior in the presence of roots, and B. cereus-produced antibiotics, zwittermicin A and kanosamine, contribute to disease suppression and inhibition of germ tube elongation in the presence of the plant root. Received: 9 September 1998 / Accepted: 13 October 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号