全文获取类型
收费全文 | 47395篇 |
免费 | 3354篇 |
国内免费 | 19篇 |
专业分类
50768篇 |
出版年
2024年 | 52篇 |
2023年 | 175篇 |
2022年 | 565篇 |
2021年 | 912篇 |
2020年 | 568篇 |
2019年 | 682篇 |
2018年 | 1028篇 |
2017年 | 906篇 |
2016年 | 1477篇 |
2015年 | 2320篇 |
2014年 | 2666篇 |
2013年 | 2978篇 |
2012年 | 3939篇 |
2011年 | 3778篇 |
2010年 | 2392篇 |
2009年 | 2184篇 |
2008年 | 3028篇 |
2007年 | 2909篇 |
2006年 | 2540篇 |
2005年 | 2356篇 |
2004年 | 2161篇 |
2003年 | 1864篇 |
2002年 | 1614篇 |
2001年 | 1301篇 |
2000年 | 1228篇 |
1999年 | 990篇 |
1998年 | 393篇 |
1997年 | 338篇 |
1996年 | 245篇 |
1995年 | 209篇 |
1994年 | 207篇 |
1993年 | 172篇 |
1992年 | 326篇 |
1991年 | 295篇 |
1990年 | 266篇 |
1989年 | 226篇 |
1988年 | 173篇 |
1987年 | 163篇 |
1986年 | 131篇 |
1985年 | 105篇 |
1984年 | 78篇 |
1983年 | 84篇 |
1982年 | 63篇 |
1981年 | 53篇 |
1980年 | 54篇 |
1979年 | 69篇 |
1978年 | 51篇 |
1977年 | 50篇 |
1976年 | 43篇 |
1974年 | 63篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
Kyungpil Kim Shibo Zhang Keni Jiang Li Cai In-Beum Lee Lewis J Feldman Haiyan Huang 《BMC bioinformatics》2007,8(1):29
Background
Clustering methods are widely used on gene expression data to categorize genes with similar expression profiles. Finding an appropriate (dis)similarity measure is critical to the analysis. In our study, we developed a new measure for clustering the genes when the key factor is the shape of the profile, and when the expression magnitude should also be accounted for in determining the gene relationship. This is achieved by modeling the shape and magnitude parameters separately in a gene expression profile, and then using the estimated shape and magnitude parameters to define a measure in a new feature space. 相似文献972.
Mannose-6-phosphate isomerase catalyzes the interconversion of mannose-6-phosphate and fructose-6-phosphate. The gene encoding a putative mannose-6-phosphate isomerase from Thermus thermophilus was cloned and expressed in Escherichia coli. The native enzyme was a 29 kDa monomer with activity maxima for mannose 6-phosphate at pH 7.0 and 80 °C in the presence of 0.5 mM Zn2+ that was present at one molecule per monomer. The half-lives of the enzyme at 65, 70, 75, 80, and 85 °C were 13, 6.5, 3.7, 1.8, and 0.2 h, respectively. The 15 putative active-site residues within 4.5 Å of the substrate mannose 6-phosphate in the homology model were individually replaced with other amino acids. The sequence alignments, activities, and kinetic analyses of the wild-type and mutant enzymes with amino acid changes at His50, Glu67, His122, and Glu132 as well as homology modeling suggested that these four residues are metal-binding residues and may be indirectly involved in catalysis. In the model, Arg11, Lys37, Gln48, Lys65 and Arg142 were located within 3 Å of the bound mannose 6-phosphate. Alanine substitutions of Gln48 as well as Arg142 resulted in increase of Km and dramatic decrease of kcat, and alanine substitutions of Arg11, Lys37, and Lys65 affected enzyme activity. These results suggest that these 5 residues are substrate-binding residues. Although Trp13 was located more than 3 Å from the substrate and may not interact directly with substrate or metal, the ring of Trp13 was essential for enzyme activity. 相似文献
973.
A simple pretreatment method using anhydrous ammonia was developed to minimize water and ammonia inputs for cellulosic ethanol production, termed the low moisture anhydrous ammonia (LMAA) pretreatment. In this method, corn stover with 30–70% moisture was contacted with anhydrous ammonia in a reactor under nearly ambient conditions. After the ammoniation step, biomass was subjected to a simple pretreatment step at moderate temperatures (40–120 °C) for 48–144 h. Pretreated biomass was saccharified and fermented without an additional washing step. With 3% glucan loading of LMAA-treated corn stover under best treatment conditions (0.1 g-ammonia + 1.0 g-water per g biomass, 80 °C, and 84 h), simultaneous saccharification and cofermentation test resulted in 24.9 g/l (89% of theoretical ethanol yield based on glucan + xylan in corn stover). 相似文献
974.
Jae-Han Bae Mi-Hyun Kwon In-Hwan Kim Ching T. Hou Hak-Ryul Kim 《Biotechnology and Bioprocess Engineering》2014,19(5):851-857
Lipases with abnormal functionalities such as high thermostability and optimal activity at extreme conditions gain special attentions because of their applicability in the restricted reaction conditions. In particular, coldactive lipases have gained special attentions in various industrial fields such as washer detergent, pharmaceutical catalyst, and production of structured lipid. However, production of cold-active lipase is mostly found from psychrophilic microorganisms. Recently we found a novel cold-active lipase from Pichia lynferdii Y-7723 which is mesophilic yeast strain. In this study, we purified the cold active lipase and the enzyme was further characterized in several parameters. The enzyme was purified with 33 purification fold using chromatographic techniques and the purified lipase represented maximum lipolytic activity at 15°C and the maximum activity was highly dependent on pH. 相似文献
975.
Most of the mitochondrial NADH dehydrogenase subunit 5 (ND5) gene and a part of nuclear 28S ribosomal RNA gene were sequenced for 14 species of ground beetles belonging to the genus Leptocarabus. In both the ND5 and the 28S rDNA phylogenetic trees of Leptocarabus, three major lineages were recognized: (1) L. marcilhaci/L. yokoael/Leptocarabus sp. from China, (2) L. koreanus/L. truncaticollis/L. seishinensis/L. semiopacus/L. canaliculatus/L. kurilensis from the northern Eurasian continent including Korea and Hokkaido, Japan, and (3) all of the Japanese species except L. kurilensis. Clustering of the species in the trees is largely linked to their geographic distribution and does not correlate with morphological characters. The species belonging to different species groups are clustered in the same lineages, and those in the same species group are scattered among the different lineages. One of the possible interpretations of the present results would be that morphological transformations independently took place in the different lineages, sometimes with accompanying parallel morphological evolution, resulting in the occurrence of the morphological species belonging to the same species group (= type) in the different lineages. 相似文献
976.
Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation 总被引:32,自引:0,他引:32
Heat shock protein 70 (HSP70) has been shown to act as an inhibitor of apoptosis. We have also observed an inhibitory effect of HSP70 on apoptotic cell death both in preheated U937 and stably transfected HSP70-overexpressing U937 (U937/HSP70) cells. However, the molecular mechanism whereby HSP70 prevents apoptosis still remains to be solved. To address this issue, we investigated the effect of HSP70 on apoptotic processes in an in vitro system. Caspase-3 cleavage and DNA fragmentation were detected in cytosolic fractions from normal cells upon addition of dATP, but not from preheated U937 or U937/hsp70 cells. Moreover, the addition of purified recombinant HSP70 to normal cytosolic fractions prevented caspase-3 cleavage and DNA fragmentation, suggesting that HSP70 prevents apoptosis upstream of caspase-3 processing. Because cytochrome c was still released from mitochondria into the cytosol by lethal heat shock despite prevention of caspase-3 activation and cell death in both preheated U937 and U937/hsp70 cells, it was evident that HSP70 acts downstream of cytochrome c release. Results obtained in vitro with purified deletion mutants of HSP70 showed that the carboxyl one-third region (from amino acids 438 to 641) including the peptide-binding domain and the carboxyl-terminal EEVD sequence was essential to prevent caspase-3 processing. From these results, we conclude that HSP70 acts as a strong suppressor of apoptosis acting downstream of cytochrome c release and upstream of caspase-3 activation. 相似文献
977.
Kim JS Coon SL Blackshaw S Cepko CL Møller M Mukda S Zhao WQ Charlton CG Klein DC 《The Journal of biological chemistry》2005,280(1):677-684
(S)-adenosylmethionine (SAM) is a critical element of melatonin synthesis as the methyl donor in the last step of the pathway, the O-methylation of N-acetyl 5-hydroxytryptamine by hydroxyindole-O-methyltransferase. The activity of the enzyme that synthesizes SAM, methionine adenosyltransferase (MAT), increases 2.5-fold at night in the pineal gland. In this study, we found that pineal MAT2A mRNA and the protein it encodes, MAT II, also increase at night, suggesting that the increase in MAT activity is caused by an increase in MAT II gene products. The night levels of MAT2A mRNA in the pineal gland were severalfold higher than in other neural and non-neural tissues examined, consistent with the requirement for SAM in melatonin synthesis. Related studies indicate that the nocturnal increase in MAT2A mRNA is caused by activation of a well described neural pathway that mediates photoneural-circadian regulation of the pineal gland. MAT2A mRNA and MAT II protein were increased in organ culture by treatment with norepinephrine (NE), the sympathetic neurotransmitter that stimulates the pineal gland at night. NE is known to markedly elevate pineal cAMP, and here it was found that cAMP agonists elevate MAT2A mRNA levels by increasing MAT2A mRNA synthesis and that drugs that block cAMP activation of cAMP dependent protein kinase block effects of NE. Therefore, the NE-cAMP dependent increase in pineal MAT activity seems to reflect an increase in MAT II protein, which occurs in response to cAMP-->protein kinase-dependent increased MAT2A expression. The existence of this MAT regulatory system underscores the importance that MAT plays in melatonin biogenesis. These studies also point to the possibility that SAM production in other tissues might be regulated through cAMP. 相似文献
978.
Kim G Rajasekaran SA Thomas G Rosen EA Landaw EM Shintaku P Lassman C Said J Rajasekaran AK 《Histology and histopathology》2005,20(1):35-44
Junctional complexes such as tight junctions, adherens junctions, and desmosomes play crucial roles in the structure and function of epithelial cells. These junctions are involved in increasing cell-cell contact and as well serve as signaling centers regulating multiple functions in epithelial cells. Carcinoma cell lines cultured in the laboratory generally lack junctional complexes. However, studies directed towards understanding the distribution of junctional complexes in human cancer tissues are lacking. In this study, we analyzed by electron microscopy the distribution of junctional complexes in patients diagnosed with renal clear-cell carcinoma. We found that both tight junctions and adherens junctions were drastically reduced in patients with cancer compared to normal tissues. Desmosomes were not detected in normal proximal tubules while distinctly present in cancer tissues. These results suggest that analysis of junctional complexes in human tumors should provide valuable information that might have prognostic and diagnostic value. 相似文献
979.
Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology 下载免费PDF全文
Kim SJ Kweon O Jones RC Freeman JP Edmondson RD Cerniglia CE 《Journal of bacteriology》2007,189(2):464-472
Mycobacterium vanbaalenii PYR-1 was the first bacterium isolated by virtue of its ability to metabolize the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) pyrene. We used metabolic, genomic, and proteomic approaches in this investigation to construct a complete and integrated pyrene degradation pathway for M. vanbaalenii PYR-1. Genome sequence analyses identified genes involved in the pyrene degradation pathway that we have proposed for this bacterium. To identify proteins involved in the degradation, we conducted a proteome analysis of cells exposed to pyrene using one-dimensional gel electrophoresis in combination with liquid chromatography-tandem mass spectrometry. Database searching performed with the M. vanbaalenii PYR-1 genome resulted in identification of 1,028 proteins with a protein false discovery rate of <1%. Based on both genomic and proteomic data, we identified 27 enzymes necessary for constructing a complete pathway for pyrene degradation. Our analyses indicate that this bacterium degrades pyrene to central intermediates through o-phthalate and the beta-ketoadipate pathway. Proteomic analysis also revealed that 18 enzymes in the pathway were upregulated more than twofold, as indicated by peptide counting when the organism was grown with pyrene; three copies of the terminal subunits of ring-hydroxylating oxygenase (NidAB2, MvanDraft_0817/0818, and PhtAaAb), dihydrodiol dehydrogenase (MvanDraft_0815), and ring cleavage dioxygenase (MvanDraft_3242) were detected only in pyrene-grown cells. The results presented here provide a comprehensive picture of pyrene metabolism in M. vanbaalenii PYR-1 and a useful framework for understanding cellular processes involved in PAH degradation. 相似文献
980.
Kang SH Kim GR Seong M Baek SH Seol JH Bang OS Ovaa H Tatsumi K Komatsu M Tanaka K Chung CH 《The Journal of biological chemistry》2007,282(8):5256-5262
Ubiquitin-fold modifier 1 (Ufm1) is a recently identified new ubiquitin-like protein, whose tertiary structure displays a striking resemblance to ubiquitin. Similar to ubiquitin, it has a Gly residue conserved across species at the C-terminal region with extensions of various amino acid sequences that need to be processed in vivo prior to conjugation to target proteins. Here we report the isolation, cloning, and characterization of two novel mouse Ufm1-specific proteases, named UfSP1 and UfSP2. UfSP1 and UfSP2 are composed of 217 and 461 amino acids, respectively, and they have no sequence homology with previously known proteases. UfSP2 is present in most, if not all, of multicellular organisms including plant, nematode, fly, and mammal, whereas UfSP1 could not be found in plant and nematode upon data base search. UfSP1 and UfSP2 cleaved the C-terminal extension of Ufm1 but not that of ubiquitin or other ubiquitin-like proteins, such as SUMO-1 and ISG15. Both were also capable of releasing Ufm1 from Ufm1-conjugated cellular proteins. They were sensitive to inhibition by sulfhydryl-blocking agents, such as N-ethylmaleimide, and their active site Cys could be labeled with Ufm1-vinylmethylester. Moreover, replacement of the conserved Cys residue by Ser resulted in a complete loss of the UfSP1 and UfSP2 activities. These results indicate that UfSP1 and UfSP2 are novel thiol proteases that specifically process the C terminus of Ufm1. 相似文献