首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116126篇
  免费   2545篇
  国内免费   4547篇
  2024年   56篇
  2023年   418篇
  2022年   677篇
  2021年   1562篇
  2020年   1239篇
  2019年   1407篇
  2018年   12826篇
  2017年   11370篇
  2016年   8548篇
  2015年   2410篇
  2014年   2397篇
  2013年   2431篇
  2012年   6766篇
  2011年   14907篇
  2010年   13296篇
  2009年   9428篇
  2008年   11070篇
  2007年   12416篇
  2006年   1228篇
  2005年   1318篇
  2004年   1601篇
  2003年   1570篇
  2002年   1236篇
  2001年   569篇
  2000年   404篇
  1999年   260篇
  1998年   164篇
  1997年   134篇
  1996年   120篇
  1995年   104篇
  1994年   95篇
  1993年   83篇
  1992年   77篇
  1991年   96篇
  1990年   53篇
  1989年   54篇
  1988年   42篇
  1987年   46篇
  1986年   24篇
  1985年   21篇
  1984年   22篇
  1983年   32篇
  1982年   15篇
  1972年   247篇
  1971年   275篇
  1970年   7篇
  1965年   14篇
  1962年   24篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
FKBP12 encodes a prolyl isomerase and highly conserved in eukaryotic species. In yeasts and animals, FKBP12 can interact with rapamycin and FK506 to form rapamycin-FKBP12 and FK506-FKBP12 complex, respectively. In higher plants, FKBP12 protein lost its function to bind rapamycin and FK506. Early studies showed that yeast and human FKBP12 protein can restore the rapamycin sensitivity in Arabidopsis, but the used concentration is 100–1000 folds higher than that in yeast and animals. High concentration of drugs would increase the cost and cause the potential secondary effects on plant growth and development. Here we further discovered that BP12 plants generated in our previous study are hypersensitive to rapamycin at the concentration as low as that is effective in yeast and animals. It is surprising to observe that WT and BP12 plants are not sensitive to FK506 in normal growth condition. These findings advance the current understanding of rapamycin-TOR signaling in plants.  相似文献   
992.
Plant miRNAs, the critical regulator of gene expression, involve many development processes in vivo. However, the roles of miRNAs in plant cell proliferation and redifferntiation in vitro remain unknown. To determine better the molecular mechanism of these processes, we have recently reported that a set of miRNAs with different expression patterns between cells of totipotent and non-totipotent Arabidopsis calli. Some of these were specifically up- or downregulated during callus formation or shoot regeneration, and other development. Among them, miR160, and one of its target genes, ARF10, regulated Arabidopsis in vitro shoot regeneration via WUS, CLV3 and CUC1/2. The miR160-overexpressing, 35S transgenic lines, exhibited reduced shoot regeneration efficiency. The mARF10, a miR160-resistant form of ARF10, showed a high level of shoot regeneration ability. In the transgenic, expression of the above shoot meristem-specific genes was elevated, which is consistent with the improved shoot regeneration. In contrast, the ARF10 deficient knockout mutant produced fewer regenerated shoot. However, overexpressors of ARF10 were only marginally more efficient than the wild type with the respect to shoot regeneration. Our observation strongly supports that proper shoot regeneration from in vitro cultured cells requires the miR160-directed negative influence of ARF10. The enhanced expression of ARF10 is likely to have contributed to the improved regeneration ability.  相似文献   
993.
E3 ubiquitin ligases regulate a variety of biological processes through the ubiquitin–proteasome system, together with ubiquitin activating enzyme E1 and ubiquitin-conjugating enzyme E2. Previous studies have demonstrated that zinc and ring finger 3 (ZNRF3), which belongs to the E3 ubiquitin ligases family is involved in the Wnt signalling pathway, which plays an important role in causing cancer. However, the expression and function of ZNRF3 in human gastric adenocarcinoma still remains unclear. Immunohistochemical and western blot analysis showed a significant down-regulation of ZNRF3 protein in gastric adenocarcinoma tissues compared with adjacent normal gastric tissues. In addition, there was a correlation between the down-regulation of ZNRF3 and poor tissue differentiation in gastric adenocarcinoma. To investigate the potential function of ZNRF3 in cell proliferation and apoptosis, a gastric cell line SGC7901 was employed. The over-expression of wild-type ZNRF3, which was accomplished by the transient transfection of recombinant pEGFP-ZNRF3 (or empty plasmids as control) into the cell line SGC7901, was confirmed by western blot analysis. Flow-cytometry-based and Cell Counting Kit-8 assays showed that over-expression of wt ZNRF3 induced apoptosis and suppressed proliferation. ZNRF3-overexpressing gastric cells displayed partly attenuated protein levels of beta-catenin and TCF-4 compared with those transfected with the empty plasmid. Our study demonstrates a novel gastric adenocarcinoma suppressor and reveals that ZNRF3 inhibits gastric cancer cell growth and promotes the cell apoptosis by affecting the Wnt/beta-catenin/TCF signalling pathway.  相似文献   
994.
Highlights? Derepression of HIF-2α mRNA in Irp1?/? mice causes age-dependent polycythemia ? HIF-2α hyperactivity is observed in multiple tissues of Irp1?/? mice ? The mRNA regulons of IRP1 and IRP2 are separable in vivo ? The IRP1-HIF-2α axis is a therapeutic target for hematologic or oncologic disorders  相似文献   
995.
We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology.  相似文献   
996.
997.
Human facial morphology is a combination of many complex traits. Little is known about the genetic basis of common facial morphological variation. Existing association studies have largely used simple landmark-distances as surrogates for the complex morphological phenotypes of the face. However, this can result in decreased statistical power and unclear inference of shape changes. In this study, we applied a new image registration approach that automatically identified the salient landmarks and aligned the sample faces using high density pixel points. Based on this high density registration, three different phenotype data schemes were used to test the association between the common facial morphological variation and 10 candidate SNPs, and their performances were compared. The first scheme used traditional landmark-distances; the second relied on the geometric analysis of 15 landmarks and the third used geometric analysis of a dense registration of ∼30,000 3D points. We found that the two geometric approaches were highly consistent in their detection of morphological changes. The geometric method using dense registration further demonstrated superiority in the fine inference of shape changes and 3D face modeling. Several candidate SNPs showed potential associations with different facial features. In particular, one SNP, a known risk factor of non-syndromic cleft lips/palates, rs642961 in the IRF6 gene, was validated to strongly predict normal lip shape variation in female Han Chinese. This study further demonstrated that dense face registration may substantially improve the detection and characterization of genetic association in common facial variation.  相似文献   
998.
During disease progression to AIDS, HIV-1 infected individuals become increasingly immunosuppressed and susceptible to opportunistic infections. It has also been demonstrated that multiple subsets of dendritic cells (DC), including DC-SIGN(+) cells, become significantly depleted in the blood and lymphoid tissues of AIDS patients, which may contribute to the failure in initiating effective host immune responses. The mechanism for DC depletion, however, is unclear. It is also known that vast quantities of viral envelope protein gp120 are shed from maturing HIV-1 virions and form circulating immune complexes in the serum of HIV-1-infected individuals, but the pathological role of gp120 in HIV-1 pathogenesis remains elusive. Here we describe a previously unrecognized mechanism of DC death in chronic HIV-1 infection, in which ligation of DC-SIGN by gp120 sensitizes DC to undergo accelerated apoptosis in response to a variety of activation stimuli. The cultured monocyte-derived DC and also freshly-isolated DC-SIGN(+) blood DC that were exposed to either cross-linked recombinant gp120 or immune-complex gp120 in HIV(+) serum underwent considerable apoptosis after CD40 ligation or exposure to bacterial lipopolysaccharide (LPS) or pro-inflammatory cytokines such as TNFα and IL-1β. Furthermore, circulating DC-SIGN(+) DC that were isolated directly from HIV-1(+) individuals had actually been pre-sensitized by serum gp120 for activation-induced exorbitant apoptosis. In all cases the DC apoptosis was substantially inhibited by DC-SIGN blockade. Finally, we showed that accelerated DC apoptosis was a direct consequence of excessive activation of the pro-apoptotic molecule ASK-1 and transfection of siRNA against ASK-1 significantly prevented the activation-induced excessive DC death. Our study discloses a previously unknown mechanism of immune modulation by envelope protein gp120, provides new insights into HIV immunopathogenesis, and suggests potential therapeutic approaches to prevent DC depletion in chronic HIV infection.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号