首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20148篇
  免费   1498篇
  国内免费   1700篇
  2024年   33篇
  2023年   310篇
  2022年   387篇
  2021年   1130篇
  2020年   711篇
  2019年   980篇
  2018年   864篇
  2017年   607篇
  2016年   938篇
  2015年   1252篇
  2014年   1555篇
  2013年   1667篇
  2012年   1930篇
  2011年   1691篇
  2010年   1046篇
  2009年   919篇
  2008年   1008篇
  2007年   883篇
  2006年   742篇
  2005年   636篇
  2004年   527篇
  2003年   474篇
  2002年   416篇
  2001年   305篇
  2000年   308篇
  1999年   323篇
  1998年   209篇
  1997年   208篇
  1996年   196篇
  1995年   163篇
  1994年   150篇
  1993年   104篇
  1992年   147篇
  1991年   116篇
  1990年   104篇
  1989年   80篇
  1988年   52篇
  1987年   32篇
  1986年   28篇
  1985年   41篇
  1984年   18篇
  1983年   23篇
  1982年   12篇
  1981年   8篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
As technologically important materials for solid‐state batteries, Li super‐ionic conductors are a class of materials exhibiting exceptionally high ionic conductivity at room temperature. These materials have unique crystal structural frameworks hosting a highly conductive Li sublattice. However, it is not understood why certain crystal structures of the super‐ionic conductors lead to high conductivity in the Li sublattice. In this study, using topological analysis and ab initio molecular dynamics simulations, the crystal structures of all Li‐conducting oxides and sulfides are studied systematically and the key features pertaining to fast‐ion conduction are quantified. In particular, a unique feature of enlarged Li sites caused by large local spaces in the crystal structural framework is identified, promoting fast conduction in the Li‐ion sublattice. Based on these quantified features, the high‐throughput screening identifies many new structures as fast Li‐ion conductors, which are further confirmed by ab initio molecular dynamics simulations. This study provides new insights and a systematic quantitative understanding of the crystal structural frameworks of fast ion‐conductor materials and motivates future experimental and computational studies on new fast‐ion conductors.  相似文献   
993.
Plutella xylostella is an important pest of cruciferous crops worldwide. However, information regarding the age‐stage, two‐sex life parameters of P. xylostella, which is vital for designing more effective control methods, is currently lacking. The present study reports age‐stage, two‐sex life table parameters for P. xylostella on napa cabbage (Brassica oleracea var. napa), white cabbage (B. oleracea var. capitata), and cauliflower (B. oleracea var. botrytis) under laboratory conditions at 25 ± 2°C, 50–60% relative humidity, and a 16‐h light : 8‐h dark photoperiod. The time for development from an egg to a male or female adult P. xylostella on white cabbage (mean [± SE] 41.15 ± 0.54 and 39.50 ± 0.54 days, respectively) was significantly longer than that on cauliflower and napa cabbage. Furthermore, P. xylostella fecundity on cauliflower (261.90 ± 4.53 eggs female) was significantly highest than on napa cabbage and white cabbage. Intrinsic rate of increase (r) and finite rate of increase (λ) were highest on cauliflower 0.182 day?1 and 1.199 day?1 respectively as comparison to napa cabbage and white cabbage. The highest gross reproductive rate (GRR) and net reproductive rates (R0) of P. xylostella 65.87 and 52.58 respectively on cauliflower then those of other hosts. The findings of the present study indicate that cauliflower is the most suitable cultivar (host) for the development of P. xylostella. Based on these findings, crops like cauliflower can be used as trap crops when napa cabbage and white cabbage are the main crops.  相似文献   
994.
995.
Marine mammals are important models for studying convergent evolution and aquatic adaption, and thus reference genomes of marine mammals can provide evolutionary insights. Here, we present the first chromosome‐level marine mammal genome assembly based on the data generated by the BGISEQ‐500 platform, for a stranded female sperm whale (Physeter macrocephalus). Using this reference genome, we performed chromosome evolution analysis of the sperm whale, including constructing ancestral chromosomes, identifying chromosome rearrangement events and comparing with cattle chromosomes, which provides a resource for exploring marine mammal adaptation and speciation. We detected a high proportion of long interspersed nuclear elements and expanded gene families, and contraction of major histocompatibility complex region genes which were specific to sperm whale. Using comparisons with sheep and cattle, we analysed positively selected genes to identify gene pathways that may be related to adaptation to the marine environment. Further, we identified possible convergent evolution in aquatic mammals by testing for positively selected genes across three orders of marine mammals. In addition, we used publicly available resequencing data to confirm a rapid decline in global population size in the Pliocene to Pleistocene transition. This study sheds light on the chromosome evolution and genetic mechanisms underpinning sperm whale adaptations, providing valuable resources for future comparative genomics.  相似文献   
996.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean that is spreading across major soybean production regions worldwide. Increased SCN virulence has recently been observed in both the United States and China. However, no study has reported a genome assembly for H. glycines at the chromosome scale. Herein, the first chromosome‐level reference genome of X12, an unusual SCN race with high infection ability, is presented. Using whole‐genome shotgun (WGS) sequencing, Pacific Biosciences (PacBio) sequencing, Illumina paired‐end sequencing, 10X Genomics linked reads and high‐throughput chromatin conformation capture (Hi‐C) genome scaffolding techniques, a 141.01‐megabase (Mb) assembled genome was obtained with scaffold and contig N50 sizes of 16.27 Mb and 330.54 kilobases (kb), respectively. The assembly showed high integrity and quality, with over 90% of Illumina reads mapped to the genome. The assembly quality was evaluated using Core Eukaryotic Genes Mapping Approach and Benchmarking Universal Single‐Copy Orthologs. A total of 11,882 genes were predicted using de novo, homolog and RNAseq data generated from eggs, second‐stage juveniles (J2), third‐stage juveniles (J3) and fourth‐stage juveniles (J4) of X12, and 79.0% of homologous sequences were annotated in the genome. These high‐quality X12 genome data will provide valuable resources for research in a broad range of areas, including fundamental nematode biology, SCN–plant interactions and co‐evolution, and also contribute to the development of technology for overall SCN management.  相似文献   
997.
Aims Elevated anthropogenic nitrogen (N) deposition could alter N status in temperate steppe. However, threshold observations of N status change from N limit to N saturation by far are not conclusive in these ecosystems. Research on the natural abundance of15N (δ15N) could greatly help provide integrated information about ecosystem N status. The goal of this study was to investigate the suitability of measurements of δ15N of major ecosystem N pools and several key species, plant15N fractionation, together with key vegetation and soil indicators in response to N fertilization as a tool to identify the N status in a temperate steppe in Inner Mongolia.  相似文献   
998.
Aims Grasslands used for animal husbandry are chosen depending on the nutritive values of dominant herbage species. However, the influence of grazing in combination with precipitation and growing season on the nutritive values of dominant species has not been explicated.  相似文献   
999.
Large‐diameter, tall‐stature, and big‐crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence play an important role in climate change mitigation strategies. Here, we hypothesized that the effects of large‐diameter, tall‐stature, and big‐crown trees overrule the effects of species richness and remaining trees attributes on aboveground biomass in tropical forests (i.e., we term the “big‐sized trees hypothesis”). Specifically, we assessed the importance of: (a) the “top 1% big‐sized trees effect” relative to species richness; (b) the “99% remaining trees effect” relative to species richness; and (c) the “top 1% big‐sized trees effect” relative to the “99% remaining trees effect” and species richness on aboveground biomass. Using environmental factor and forest inventory datasets from 712 tropical forest plots in Hainan Island of southern China, we tested several structural equation models for disentangling the relative effects of big‐sized trees, remaining trees attributes, and species richness on aboveground biomass, while considering for the full (indirect effects only) and partial (direct and indirect effects) mediation effects of climatic and soil conditions, as well as interactions between species richness and trees attributes. We found that top 1% big‐sized trees attributes strongly increased aboveground biomass (i.e., explained 55%–70% of the accounted variation) compared to species richness (2%–18%) and 99% remaining trees attributes (6%–10%). In addition, species richness increased aboveground biomass indirectly via increasing big‐sized trees but via decreasing remaining trees. Hence, we show that the “big‐sized trees effect” overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big‐sized trees may be more susceptible to atmospheric drought. We argue that the effects of big‐sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning.  相似文献   
1000.
Subsoil contains more than half of soil organic carbon (SOC) globally and is conventionally assumed to be relatively unresponsive to warming compared to the topsoil. Here, we show substantial changes in carbon allocation and dynamics of the subsoil but not topsoil in the Qinghai‐Tibetan alpine grasslands over 5 years of warming. Specifically, warming enhanced the accumulation of newly synthesized (14C‐enriched) carbon in the subsoil slow‐cycling pool (silt‐clay fraction) but promoted the decomposition of plant‐derived lignin in the fast‐cycling pool (macroaggregates). These changes mirrored an accumulation of lipids and sugars at the expense of lignin in the warmed bulk subsoil, likely associated with shortened soil freezing period and a deepening root system. As warming is accompanied by deepening roots in a wide range of ecosystems, root‐driven accrual of slow‐cycling pool may represent an important and overlooked mechanism for a potential long‐term carbon sink at depth. Moreover, given the contrasting sensitivity of SOC dynamics at varied depths, warming studies focusing only on surface soils may vastly misrepresent shifts in ecosystem carbon storage under climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号