首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5134篇
  免费   391篇
  国内免费   484篇
  2024年   7篇
  2023年   61篇
  2022年   89篇
  2021年   308篇
  2020年   208篇
  2019年   231篇
  2018年   251篇
  2017年   180篇
  2016年   234篇
  2015年   314篇
  2014年   390篇
  2013年   391篇
  2012年   483篇
  2011年   429篇
  2010年   277篇
  2009年   265篇
  2008年   275篇
  2007年   253篇
  2006年   194篇
  2005年   145篇
  2004年   163篇
  2003年   134篇
  2002年   91篇
  2001年   76篇
  2000年   78篇
  1999年   74篇
  1998年   44篇
  1997年   47篇
  1996年   46篇
  1995年   40篇
  1994年   30篇
  1993年   29篇
  1992年   29篇
  1991年   19篇
  1990年   17篇
  1989年   19篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   10篇
  1984年   6篇
  1983年   3篇
  1979年   8篇
  1975年   7篇
  1974年   4篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1966年   3篇
  1965年   3篇
排序方式: 共有6009条查询结果,搜索用时 31 毫秒
81.
EDS1 (Enhanced Disease Susceptibility 1) plays a crucial role in both effector-triggered immunity activation and plant basal defence. However, whether pathogen effectors can target EDS1 or an EDS1-related pathway to manipulate immunity is rarely reported. In this study, we identified a Phytophthora capsici Avirulence Homolog (Avh) RxLR (Arg-any amino acid-Leu-Arg) effector PcAvh103 that interacts with EDS1. We demonstrated that PcAvh103 can facilitate P. capsici infection and is required for pathogen virulence. Furthermore, genetic evidence showed that PcAvh103 contributes to virulence through targeting EDS1. Finally, PcAvh103 specifically interacts with the lipase domain of EDS1 and can promote the disassociation of EDS1–PAD4 (Phytoalexin Deficient 4) complex in planta. Together, our results revealed that the P. capsici RxLR effector PcAvh103 targets host EDS1 to suppress plant immunity, probably through disrupting the EDS1–PAD4 immune signalling pathway.  相似文献   
82.
83.
Chikungunya virus (CHIKV) is a mosquito‐transmitted alphavirus, and its infection can cause long‐term debilitating arthritis in humans. Currently, there are no licensed vaccines or therapeutics for human use to combat CHIKV infections. In this study, we explored the feasibility of using an anti‐CHIKV monoclonal antibody (mAb) produced in wild‐type (WT) and glycoengineered (?XFT) Nicotiana benthamiana plants in treating CHIKV infection in a mouse model. CHIKV mAb was efficiently expressed and assembled in plant leaves and enriched to homogeneity by a simple purification scheme. While mAb produced in ?XFT carried a single N‐glycan species at the Fc domain, namely GnGn structures, WT produced mAb exhibited a mixture of N‐glycans including the typical plant GnGnXF3 glycans, accompanied by incompletely processed and oligomannosidic structures. Both WT and ?XFT plant‐produced mAbs demonstrated potent in vitro neutralization activity against CHIKV. Notably, both mAb glycoforms showed in vivo efficacy in a mouse model, with a slight increased efficacy by the ?XFT‐produced mAbs. This is the first report of the efficacy of plant‐produced mAbs against CHIKV, which demonstrates the ability of using plants as an effective platform for production of functionally active CHIKV mAbs and implies optimization of in vivo activity by controlling Fc glycosylation.  相似文献   
84.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   
85.
A colorimetric sensor array based on natural pigments was developed to discriminate between various saccharides. Anthocyanins, pH‐sensitive natural pigments, were extracted from fruits and flowers and used as components of the sensor array. Variation in pH, due to the reaction between saccharides and boronic acids, caused obvious colour changes in the natural pigments. Only by observing the difference map with the naked eye could 11 common saccharides be divided into independent individuals. In conjunction with pattern recognition, the sensor array clearly differentiated between sugar and sugar alcohol with highly accuracy and allowed rapid quantification of different concentrations of maltitol and fructose. This sensor array for saccharides is expected to become a promising alternative tool for food monitoring. The link between anthocyanin and saccharide detection opened a new guiding direction for the application of anthocyanins in foods.  相似文献   
86.
Guo  Y. Y.  Li  H. J.  Liu  J.  Bai  Y. W.  Xue  J. Q.  Zhang  R. H. 《Russian Journal of Plant Physiology》2020,67(2):312-322
Russian Journal of Plant Physiology - Melatonin plays an important role in the enhancement of plant tolerance to drought stress. The underlying mechanisms of this melatonin-induced protection of...  相似文献   
87.
88.
Livestock grazing often alters aboveground and belowground communities of grasslands and their mediated carbon (C) and nitrogen (N) cycling processes at the local scale. Yet, few have examined whether grazing‐induced changes in soil food webs and their ecosystem functions can be extrapolated to a regional scale. We investigated how large herbivore grazing affects soil micro‐food webs (microbes and nematodes) and ecosystem functions (soil C and N mineralization), using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results showed that grazing not only affected plant variables (e.g., biomass and C and N concentrations), but also altered soil substrates (e.g., C and N contents) and soil environment (e.g., soil pH and bulk density). Grazing had strong bottom‐up effects on soil micro‐food webs, leading to more pronounced decreases at higher trophic levels (nematodes) than at lower trophic levels (microbes). Structural equation modeling showed that changes in plant biomass and soil environment dominated grazing effects on microbes, while nematodes were mainly influenced by changes in plant biomass and soil C and N contents; the grazing effects, however, differed greatly among functional groups in the soil micro‐food webs. Grazing reduced soil C and N mineralization rates via changes in plant biomass, soil C and N contents, and soil environment across grasslands on the Mongolian Plateau. Spearman's rank correlation analysis also showed that grazing reduced the correlations between functional groups in soil micro‐food webs and then weakened the correlation between soil micro‐food webs and soil C and N mineralization. These results suggest that changes in soil micro‐food webs resulting from livestock grazing are poor predictors of soil C and N processes at regional scale, and that the relationships between soil food webs and ecosystem functions depend on spatial scales and land‐use changes.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号