首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6678篇
  免费   656篇
  国内免费   3篇
  2024年   7篇
  2023年   66篇
  2022年   80篇
  2021年   278篇
  2020年   156篇
  2019年   226篇
  2018年   182篇
  2017年   190篇
  2016年   297篇
  2015年   511篇
  2014年   560篇
  2013年   569篇
  2012年   731篇
  2011年   670篇
  2010年   376篇
  2009年   328篇
  2008年   412篇
  2007年   378篇
  2006年   321篇
  2005年   284篇
  2004年   240篇
  2003年   156篇
  2002年   141篇
  2001年   32篇
  2000年   10篇
  1999年   18篇
  1998年   10篇
  1997年   13篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   7篇
  1991年   8篇
  1990年   4篇
  1989年   9篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1980年   3篇
  1977年   4篇
  1976年   2篇
  1974年   2篇
  1971年   5篇
  1965年   2篇
  1954年   1篇
排序方式: 共有7337条查询结果,搜索用时 15 毫秒
61.
Splicing is catalyzed by the spliceosome, a compositionally dynamic complex assembled stepwise on pre-mRNA. We reveal links between splicing machinery components and the intrinsically disordered ciliopathy protein SANS. Pathogenic mutations in SANS/USH1G lead to Usher syndrome—the most common cause of deaf-blindness. Previously, SANS was shown to function only in the cytosol and primary cilia. Here, we have uncovered molecular links between SANS and pre-mRNA splicing catalyzed by the spliceosome in the nucleus. We show that SANS is found in Cajal bodies and nuclear speckles, where it interacts with components of spliceosomal sub-complexes such as SF3B1 and the large splicing cofactor SON but also with PRPFs and snRNAs related to the tri-snRNP complex. SANS is required for the transfer of tri-snRNPs between Cajal bodies and nuclear speckles for spliceosome assembly and may also participate in snRNP recycling back to Cajal bodies. SANS depletion alters the kinetics of spliceosome assembly, leading to accumulation of complex A. SANS deficiency and USH1G pathogenic mutations affects splicing of genes related to cell proliferation and human Usher syndrome. Thus, we provide the first evidence that splicing dysregulation may participate in the pathophysiology of Usher syndrome.  相似文献   
62.
63.
Both obesity and gestational diabetes mellitus (GDM) lead to poor maternal and fetal outcomes, including pregnancy complications, fetal growth issues, stillbirth, and developmental programming of adult-onset disease in the offspring. Increased placental oxidative/nitrative stress and reduced placental (trophoblast) mitochondrial respiration occur in association with the altered maternal metabolic milieu of obesity and GDM. The effect is particularly evident when the fetus is male, suggesting a sexually dimorphic influence on the placenta. In addition, obesity and GDM are associated with inflexibility in trophoblast, limiting the ability to switch between usage of glucose, fatty acids, and glutamine as substrates for oxidative phosphorylation, again in a sexually dimorphic manner. Here we review mechanisms underlying placental mitochondrial dysfunction: its relationship to maternal and fetal outcomes and the influence of fetal sex. Prevention of placental oxidative stress and mitochondrial dysfunction may improve pregnancy outcomes. We outline pathways to ameliorate deficient mitochondrial respiration, particularly the benefits and pitfalls of mitochondria-targeted antioxidants.  相似文献   
64.
65.
66.
67.
Journal of Ethology - Noise pollution may impair the cognitive performances of several animal species, producing suboptimal behavioral responses. Involuntary shifts in attention from noise...  相似文献   
68.
Since the initial report of the novel Coronavirus Disease 2019 (COVID-19) emanating from Wuhan, China, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally. While the effects of SARS-CoV-2 infection are not completely understood, there appears to be a wide spectrum of disease ranging from mild symptoms to severe respiratory distress, hospitalization, and mortality. There are no Food and Drug Administration (FDA)-approved treatments for COVID-19 aside from remdesivir; early efforts to identify efficacious therapeutics for COVID-19 have mainly focused on drug repurposing screens to identify compounds with antiviral activity against SARS-CoV-2 in cellular infection systems. These screens have yielded intriguing hits, but the use of nonhuman immortalized cell lines derived from non-pulmonary or gastrointestinal origins poses any number of questions in predicting the physiological and pathological relevance of these potential interventions. While our knowledge of this novel virus continues to evolve, our current understanding of the key molecular and cellular interactions involved in SARS-CoV-2 infection is discussed in order to provide a framework for developing the most appropriate in vitro toolbox to support current and future drug discovery efforts.  相似文献   
69.
The acoustic startle response is an evolutionarily conserved avoidance behavior. Disruptions in startle behavior, particularly startle magnitude, are a hallmark of several human neurological disorders. While the neural circuitry underlying startle behavior has been studied extensively, the repertoire of genes and genetic pathways that regulate this locomotor behavior has not been explored using an unbiased genetic approach. To identify such genes, we took advantage of the stereotypic startle behavior in zebrafish larvae and performed a forward genetic screen coupled with whole genome analysis. We uncovered mutations in eight genes critical for startle behavior, including two genes encoding proteins associated with human neurological disorders, Dolichol kinase (Dolk), a broadly expressed regulator of the glycoprotein biosynthesis pathway, and the potassium Shaker-like channel subunit Kv1.1. We demonstrate that Kv1.1 and Dolk play critical roles in the spinal cord to regulate movement magnitude during the startle response and spontaneous swim movements. Moreover, we show that Kv1.1 protein is mislocalized in dolk mutants, suggesting they act in a common genetic pathway. Combined, our results identify a diverse set of eight genes, all associated with human disorders, that regulate zebrafish startle behavior and reveal a previously unappreciated role for Dolk and Kv1.1 in regulating movement magnitude via a common genetic pathway.  相似文献   
70.
Azole-resistant environmental Aspergillus fumigatus presents a threat to public health but the extent of this threat in Southeast Asia is poorly described. We conducted environmental surveillance in the Mekong Delta region of Vietnam, collecting air and ground samples across key land-use types, and determined antifungal susceptibilities of Aspergillus section Fumigati (ASF) isolates and azole concentrations in soils. Of 119 ASF isolates, 55% were resistant (or non-wild type) to itraconazole, 65% to posaconazole and 50% to voriconazole. Azole resistance was more frequent in A. fumigatus sensu stricto isolates (95%) than other ASF species (32%). Resistant isolates and agricultural azole residues were overrepresented in samples from cultivated land. cyp51A gene sequence analysis showed 38/56 resistant A. fumigatus sensu stricto isolates carried known resistance mutations, with TR34/L98H most frequent (34/38).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号