首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5759篇
  免费   532篇
  国内免费   1篇
  2023年   28篇
  2022年   21篇
  2021年   148篇
  2020年   70篇
  2019年   107篇
  2018年   117篇
  2017年   108篇
  2016年   167篇
  2015年   299篇
  2014年   297篇
  2013年   392篇
  2012年   553篇
  2011年   488篇
  2010年   337篇
  2009年   291篇
  2008年   363篇
  2007年   410篇
  2006年   389篇
  2005年   323篇
  2004年   306篇
  2003年   299篇
  2002年   225篇
  2001年   45篇
  2000年   41篇
  1999年   43篇
  1998年   60篇
  1997年   22篇
  1996年   35篇
  1995年   27篇
  1994年   22篇
  1993年   29篇
  1992年   17篇
  1991年   14篇
  1990年   17篇
  1989年   24篇
  1988年   18篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   12篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   9篇
  1979年   6篇
  1977年   9篇
  1976年   5篇
  1975年   7篇
  1974年   14篇
  1973年   7篇
排序方式: 共有6292条查询结果,搜索用时 275 毫秒
991.
Lipid bilayers are two-dimensional fluids. Here, the effect of monovalent ion concentration on the mixing, and consequently the organization, of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) bilayers has been examined. Epifluorescence microscopy was used to visualize the organization. Fluorescence recovery after photobleaching and attenuated total reflection-Fourier transform infrared spectroscopy were used to assess the fluidity of the lipids. At high ionic strength the DOPC and DOPA lipids appear uniformly mixed. Upon lowering the ionic strength, rapid separation is observed. The DOPA-rich regions appear fractal-like and exhibit hysteresis in their properties. The lipids freely exchange between the two regions. These experiments clearly demonstrate the significant effect that electrostatics can have on membrane organization.  相似文献   
992.
The cellular actions of genistein, and its in vivo metabolites, are believed to mediate the decreased risk of breast cancer associated with high soy consumption. The genistein metabolite, 5,7,3′,4′-tetrahydroxyisoflavone (THIF), induced G2-M cell cycle arrest in T47D tumorigenic breast epithelial cells via a mechanism involving the activation of ataxia telangiectasia and Rad3-related kinase (ATR) via its phosphorylation at Ser428. This activation of ATR appeared to result from THIF-induced increases in intracellular oxidative stress, a depletion of cellular GSH and an increase in DNA strand breakage. THIF treatment also led to an inhibition of cdc2, which was accompanied by the phosphorylation of both p53 (Ser15) and Chk1 (Ser296) and the de-activation of cdc25C phosphatase. We suggest the anti-proliferative actions of THIF may be mediated by initial oxidative DNA damage, activation of ATR and downstream regulation of the p53 and Chk1 pathways leading to cell cycle arrest in G2-M. This may represent one mechanism by which genistein exerts its cellular activity in vivo.  相似文献   
993.
994.
A selection of World Wide Web sites relevant to papers published in this issue of Current Opinion in Structural Biology.  相似文献   
995.
Understanding regional variability in species richness is necessary for conservation efforts to succeed in the face of large-scale environmental deterioration. Several analyses of North American vertebrates have shown that climatic energy provides the best explanation of contemporary species richness patterns. The paucity of analyses of insect diversity patterns, however, remains a serious obstacle to a general hypothesis of spatial variation in diversity. We collected species distribution data on a North American beetle genus, Epicauta (Coleoptera: Meloidae) and tested several major diversity hypotheses. These beetles are generally grasshopper egg predators as larvae, and angiosperm herbivores as adults. Epicauta richness is highest in the hot, dry American southwest, and decreases north and east, consistent with the species richness-energy hypothesis. Potential evapotranspiration, which is also the best predictor of richness patterns among North American vertebrates, explains 80.2% of the variability in Epicauta species richness. Net primary productivity and variables measuring climatic heat energy only (such as PET) are not generally comparable, though they are sometimes treated as if they were equivalent. We conclude that the species richness-energy hypothesis currently provides a better overall explanation for Epicauta species richness patterns in North America than other major diversity hypotheses. The observed relationship between climatic energy and regional species richness may provide significant insight into the response of ecological communities to climate change.  相似文献   
996.
A direct method for determination of Δ5 3β-hydroxysteroid dehydrogenase (3β-HSD) activity was employed in isolated Leydig cells (LC) derived from rats on fetal day 19 (F19) and postnatal (N) days 1,12,24, 34 and 45 and adults. The activity of 3β-HSD in the adult LC was 1.15 ± 0.02 (μmole/μg DNA/hr, mean ± SEM, n = 73). Activities in the other groups, expressed as a percentage of the respective adult control, were: F19-38%; N1-39%; N12-8%; N24-89%; N34-166%; and N45-118%. A good correlation was found between histochemical staining for 3β-HSD and the quantitive method employed. Using (3H)-DHA as a substrate, LC isolated from F19, n1 and N12 produced testosterone in appreciable amounts (41%, 55% and 20% of the toal products respectively) whereas at advanced stages of development (N24 to adulthood) the major product was androstenedione (93 ± 1%). These findings may be explained by the observed decrease in 17β-hydroxysteroid dehydrogenase (17β-HSD) activity, due to an insufficient supply of NADPH, in the older vs. earlier stages of development. This study indicates the presence of steroidogenic enzymatic activity in LC throughout development in the rat. It also provides a relatively simple in vitro model for studies of testicular regulation during development.  相似文献   
997.
SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5′ capping of viral RNAs. The formation of the 5′ 7-methylguanosine (m7G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5′ triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5′ end of viral RNA via a 5′ to 5′ triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.  相似文献   
998.
999.
Tryptophan catabolism is highly conserved and generates important bioactive metabolites, including kynurenines, and in some animals, NAD+. Aging and inflammation are associated with increased levels of kynurenine pathway (KP) metabolites and depleted NAD+, factors which are implicated as contributors to frailty and morbidity. Contrastingly, KP suppression and NAD+ supplementation are associated with increased life span in some animals. Here, we used DGRP_229 Drosophila to elucidate the effects of KP elevation, KP suppression, and NAD+ supplementation on physical performance and survivorship. Flies were chronically fed kynurenines, KP inhibitors, NAD+ precursors, or a combination of KP inhibitors with NAD+ precursors. Flies with elevated kynurenines had reduced climbing speed, endurance, and life span. Treatment with a combination of KP inhibitors and NAD+ precursors preserved physical function and synergistically increased maximum life span. We conclude that KP flux can regulate health span and life span in Drosophila and that targeting KP and NAD+ metabolism can synergistically increase life span.  相似文献   
1000.
Biological Specimen Preparation for Transmission Electron Microscopy (1998). A.M. Glauert, P.R. Lewis. In: A.M. Glauert (Ed). Practical Methods in Electron Microscopy, Vol 17. London: Portland Press, 326 pp. £39.50 paperback; ISBN 1 85578 060 7  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号