首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   81篇
  2021年   10篇
  2020年   11篇
  2018年   12篇
  2017年   6篇
  2016年   25篇
  2015年   23篇
  2014年   19篇
  2013年   26篇
  2012年   41篇
  2011年   49篇
  2010年   26篇
  2009年   29篇
  2008年   24篇
  2007年   33篇
  2006年   48篇
  2005年   49篇
  2004年   45篇
  2003年   35篇
  2002年   39篇
  2001年   37篇
  2000年   31篇
  1999年   19篇
  1998年   8篇
  1997年   6篇
  1996年   12篇
  1995年   6篇
  1994年   18篇
  1993年   11篇
  1992年   26篇
  1991年   11篇
  1990年   9篇
  1989年   14篇
  1988年   21篇
  1987年   6篇
  1986年   6篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   11篇
  1980年   5篇
  1979年   10篇
  1978年   10篇
  1977年   9篇
  1975年   10篇
  1974年   5篇
  1973年   9篇
  1971年   7篇
  1970年   9篇
  1969年   4篇
  1967年   5篇
排序方式: 共有939条查询结果,搜索用时 15 毫秒
121.
BACKGROUND AND AIMS: Soil water deficit is a major abiotic stress with severe consequences for the development, productivity and quality of crops. However, it is considered a positive factor in grapevine management (Vitis vinifera), as it has been shown to increase grape quality. The effects of soil water deficit on organogenesis, morphogenesis and gas exchange in the shoot were investigated. METHODS: Shoot organogenesis was analysed by distinguishing between the various steps in the development of the main axis and branches. Several experiments were carried out in pots, placed in a greenhouse or outside, in southern France. Soil water deficits of various intensities were imposed during vegetative development of the shoots of two cultivars ('Syrah' and 'Grenache N'). KEY RESULTS: All developmental processes were inhibited by soil water deficit, in an intensity-dependent manner, and sensitivity to water stress was process-dependent. Quantitative relationships with soil water were established for all processes. No difference was observed between the two cultivars for any criterion. The number of leaves on branches was particularly sensitive to soil water deficit, which rapidly and strongly reduced the rate of leaf appearance on developing branches. This response was not related to carbon availability, photosynthetic activity or the soluble sugar content of young expanding leaves. The potential number of branches was not a limiting factor for shoot development. CONCLUSIONS: The particularly high sensitivity to soil water deficit of leaf appearance on branches indicates that this process is a major determinant of the adaptation of plant leaf area to soil water deficit. The origin of this particular developmental response to soil water deficit is unclear, but it seems to be related to constitutive characteristics of branches rather than to competition for assimilates between axes differing in sink strength.  相似文献   
122.
NO-Synthases are heme proteins that catalyze the oxidation of L-arginine into NO and L-citrulline. Some non-amino acid alkylguanidines may serve as substrates of inducible NOS (iNOS), while no NO* production is obtained from arylguanidines. All studied guanidines induce uncoupling between electrons transferred from the reductase domain and those required for NO formation. This uncoupling becomes critical with arylguanidines, leading to the exclusive formation of superoxide anion O2*- as well as hydrogen peroxide H2O2. To understand these different behaviors, we have conducted rapid scanning stopped-flow experiments with dihydrobiopterin (BH2) and tetrahydrobiopterin (BH4) to study, respectively, the (i) autoxidation and (ii) activation processes of heme ferrous-O2 complexes (Fe(II)O2) in the presence of eight alkyl- and arylguanidines. The Fe(II)O2 complex is more easily autooxidized by alkylguanidines (10-fold) and arylguanidines (100-fold) compared to L-arginine. In the presence of alkylguanidines and BH4, the oxygen-activation kinetics are very similar to those observed with L-arginine. Conversely, in the presence of arylguanidines, no Fe(II)O2 intermediate is detected. To understand such variations in reactivity and stability of Fe(II)O2 complex, we have characterized the effects of alkyl- and arylguanidines on Fe(II)O2 structure using the Fe(II)CO complex as a mimic. Resonance Raman and FTIR spectroscopies show that the two classes of guanidine derivatives induce different polar effects on Fe(II)CO environment. Our data suggest that the structure of the substituted guanidine can modulate the stability and the reactivity of heme-dioxygen complexes. We thus propose differential mechanisms for the electron- and proton-transfer steps in the NOS-dependent, oxygen-activation process, contingent upon whether alkyl- or arylguanidines are bound.  相似文献   
123.
The structure and dynamics of small eukaryotes (cells with a diameter less than 5 μm) were studied over two consecutive years in an oligomesotrophic lake (Lake Pavin in France). Water samples were collected at 5 and 30 m below the surface; when the lake was stratified, these depths corresponded to the epilimnion and hypolimnion. Changes in small-eukaryote structure were analyzed using terminal restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the 18S rRNA genes. Terminal restriction fragments from clones were used to reveal the dominant taxa in T-RFLP profiles of the environmental samples. Spumella-like cells (Chrysophyceae) did not dominate the small eukaryote community identified by molecular techniques in lacustrine ecosystems. Small eukaryotes appeared to be dominated by heterotrophic cells, particularly Cercozoa, which represented nearly half of the identified phylotypes, followed by the Fungi-LKM11 group (25%), choanoflagellates (10.3%) and Chrysophyceae (8.9%). Bicosoecida, Cryptophyta, and ciliates represented less than 9% of the community studied. No seasonal reproducibility in temporal evolution of the small-eukaryote community was observed from 1 year to the next. The T-RFLP patterns were related to bottom-up (resources) and top-down (grazing) variables using canonical correspondence analysis. The results showed a strong top-down regulation of small eukaryotes by zooplankton, more exactly, by cladocerans at 5 m and copepods at 30 m. Among bottom-up factors, temperature had a significant effect at both depths. The concentrations of nitrogenous nutrients and total phosphorus also had an effect on small-eukaryote dynamics at 5 m, whereas bacterial abundance and dissolved oxygen played a more important structuring role in the deeper zone.  相似文献   
124.
Although primary and memory responses against bacteria and viruses have been studied extensively, T helper type 2 (T(H)2) effector mechanisms leading to host protection against helminthic parasites remain elusive. Examination of the intestinal epithelial submucosa of mice after primary and secondary infections by a natural gastrointestinal parasite revealed a distinct immune-cell infiltrate after challenge, featuring interleukin-4-expressing memory CD4(+) T cells that induced IL-4 receptor(hi) (IL-4R(hi)) CD206(+) alternatively activated macrophages. In turn, these alternatively activated macrophages (AAMacs) functioned as important effector cells of the protective memory response contributing to parasite elimination, demonstrating a previously unknown mechanism for host protection against intestinal helminths.  相似文献   
125.
Activation of 'initiator' (or 'apical') caspases-2, -8 or -9 (refs 1-3) is crucial for induction of apoptosis. These caspases function to activate executioner caspapses that, in turn, orchestrate apoptotic cell death. Here, we show that a cell-permeable, biotinylated pan-caspase inhibitor (bVAD-fmk) both inhibited and 'trapped' the apical caspase activated when apoptosis was triggered. As expected, only caspase-8 was trapped in response to ligation of death receptors, whereas only caspase-9 was trapped in response to a variety of other apoptosis-inducing agents. Caspase-2 was exclusively activated in heat shock-induced apoptosis. This activation of caspase-2 was also observed in cells protected from heat-shock-induced apoptosis by Bcl-2 or Bcl-xL. Reduced sensitivity to heat-shock-induced death was observed in caspase-2(-/-) cells. Furthermore, cells lacking the adapter molecule RAIDD failed to activate caspase-2 after heat shock treatment and showed resistance to apoptosis in this setting. This approach unambiguously identifies the apical caspase activated in response to apoptotic stimuli, and establishes caspase-2 as a proximal mediator of heat shock-induced apoptosis.  相似文献   
126.

Background  

Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase.  相似文献   
127.
Cigarette smoke (CS) exposure induces mucus obstruction and the development of chronic bronchitis (CB). While many of these responses are determined genetically, little is known about the effects CS can exert on pulmonary epithelia at the protein level. We, therefore, tested the hypothesis that CS exerts direct effects on the CFTR protein, which could impair airway hydration, leading to the mucus stasis characteristic of both cystic fibrosis and CB. In vivo and in vitro studies demonstrated that CS rapidly decreased CFTR activity, leading to airway surface liquid (ASL) volume depletion (i.e., dehydration). Further studies revealed that CS induced internalization of CFTR. Surprisingly, CS-internalized CFTR did not colocalize with lysosomal proteins. Instead, the bulk of CFTR shifted to a detergent-resistant fraction within the cell and colocalized with the intermediate filament vimentin, suggesting that CS induced CFTR movement into an aggresome-like, perinuclear compartment. To test whether airway dehydration could be reversed, we used hypertonic saline (HS) as an osmolyte to rehydrate ASL. HS restored ASL height in CS-exposed, dehydrated airway cultures. Similarly, inhaled HS restored mucus transport and increased clearance in patients with CB. Thus, we propose that CS exposure rapidly impairs CFTR function by internalizing CFTR, leading to ASL dehydration, which promotes mucus stasis and a failure of mucus clearance, leaving smokers at risk for developing CB. Furthermore, our data suggest that strategies to rehydrate airway surfaces may provide a novel form of therapy for patients with CB.  相似文献   
128.
The present study examined the temporal pattern of responding in a conditioned bar-press suppression task in rats. Rats were exposed to either a 30-s or a 120-s conditioned stimulus (CS) followed by a footshock. Training took place either while the rats were lever-pressing for water (online), or with the lever removed from the box (offline). They were then exposed to the CS while they were lever-pressing for water, either in the training context or in a different context. Bar-press suppression during the CS was constant across the duration of the CS during training, but was restricted to the initial portion of the CS at the time of testing, especially when subjects were tested in a different context. Those results replicate the reactive (as opposed to anticipatory) pattern observed in a lick suppression procedure by Jozefowiez et al. (2011) and indicate that a change in context at the time of testing might be critical for its expression.  相似文献   
129.
130.
Genome sequencing has shown the presence of genes coding for NO-synthase (NOS)-like proteins in bacteria. The roles and properties of these proteins remain unclear. UV-visible spectroscopy was used to characterize the recombinant NOS-like protein from Bacillus subtilis (bsNOS) in its ferric and ferrous states in the presence of various FeIII- and FeII-heme-ligands and of a series of l-arginine (l-arg) analogs. BsNOS exhibited several spectroscopic and binding properties in common with Bacillus anthracis NOS (baNOS) that were clearly different from those of tetrahydrobiopterin (H4B)-free mammalian NOS oxygenase domains (mNOSoxys) and of Staphylococcus aureus NOS (saNOS). Interestingly, bsNOS and baNOS that do not contain H4B exhibited properties much closer to those of H4B-containing mNOSoxys. Moreover, bsNOS was found to efficiently catalyze the oxidation of l-arginine into l-citrulline by H2O2, whereas H4B-free mNOSoxys exhibited low activities for this reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号