首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10969篇
  免费   1039篇
  国内免费   12篇
  2023年   40篇
  2022年   32篇
  2021年   204篇
  2020年   128篇
  2019年   145篇
  2018年   181篇
  2017年   199篇
  2016年   280篇
  2015年   486篇
  2014年   534篇
  2013年   703篇
  2012年   852篇
  2011年   877篇
  2010年   489篇
  2009年   472篇
  2008年   704篇
  2007年   652篇
  2006年   607篇
  2005年   600篇
  2004年   542篇
  2003年   522篇
  2002年   483篇
  2001年   140篇
  2000年   116篇
  1999年   165篇
  1998年   132篇
  1997年   107篇
  1996年   77篇
  1995年   65篇
  1994年   63篇
  1993年   62篇
  1992年   97篇
  1991年   67篇
  1990年   79篇
  1989年   87篇
  1988年   65篇
  1987年   71篇
  1986年   46篇
  1985年   64篇
  1984年   38篇
  1983年   43篇
  1982年   43篇
  1981年   60篇
  1980年   53篇
  1979年   40篇
  1978年   39篇
  1977年   35篇
  1976年   42篇
  1974年   35篇
  1971年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Climate change is expected to have profound ecological effects, yet shifts in competitive abilities among species are rarely studied in this context. Blue tits (Cyanistes caeruleus) and great tits (Parus major) compete for food and roosting sites, yet coexist across much of their range. Climate change might thus change the competitive relationships and coexistence between these two species. Analysing four of the highest-quality, long-term datasets available on these species across Europe, we extend the textbook example of coexistence between competing species to include the dynamic effects of long-term climate variation. Using threshold time-series statistical modelling, we demonstrate that long-term climate variation affects species demography through different influences on density-dependent and density-independent processes. The competitive interaction between blue tits and great tits has shifted in one of the studied sites, creating conditions that alter the relative equilibrium densities between the two species, potentially disrupting long-term coexistence. Our analyses show that long-term climate change can, but does not always, generate local differences in the equilibrium conditions of spatially structured species assemblages. We demonstrate how long-term data can be used to better understand whether (and how), for instance, climate change might change the relationships between coexisting species. However, the studied populations are rather robust against competitive exclusion.  相似文献   
992.
Insulin‐regulated aminopeptidase (IRAP or oxytocinase) is a membrane‐bound zinc‐metallopeptidase that cleaves neuroactive peptides in the brain and produces memory enhancing effects when inhibited. We have determined the crystal structure of human IRAP revealing a closed, four domain arrangement with a large, mostly buried cavity abutting the active site. The structure reveals that the GAMEN exopeptidase loop adopts a very different conformation from other aminopeptidases, thus explaining IRAP's unique specificity for cyclic peptides such as oxytocin and vasopressin. Computational docking of a series of IRAP‐specific cognitive enhancers into the crystal structure provides a molecular basis for their structure–activity relationships and demonstrates that the structure will be a powerful tool in the development of new classes of cognitive enhancers for treating a variety of memory disorders such as Alzheimer's disease.  相似文献   
993.
Exposure to antibiotics induces the expression of mutagenic bacterial stress–response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress–response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway.  相似文献   
994.
The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1‐checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures. Biotechnol. Bioeng. 2015;112: 141–155. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   
995.
996.
Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.  相似文献   
997.
The 13C‐labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of 13C‐enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α‐ketoglutarate into glutamate in neurons, and incorporation of α‐ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single 13C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate‐to‐glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2‐13C]acetate and [1,6‐13C]glucose, and proton decoupled 13C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that 13C‐labeled acetate and glucose contributed approximately equally to acetyl‐CoA (0.96) in astrocytes. As this method relies on a single 13C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions.

  相似文献   

998.
999.
Precise timing of sperm activation ensures the greatest likelihood of fertilization. Precision in Caenorhabditis elegans sperm activation is ensured by external signaling, which induces the spherical spermatid to reorganize and extend a pseudopod for motility. Spermatid activation, also called spermiogenesis, is prevented from occurring prematurely by the activity of SPE-6 and perhaps other proteins, termed “the brake model.” Here, we identify the spe-47 gene from the hc198 mutation that causes premature spermiogenesis. The mutation was isolated in a suppressor screen of spe-27(it132ts), which normally renders worms sterile, due to defective transduction of the activation signal. In a spe-27(+) background, spe-47(hc198) causes a temperature-sensitive reduction of fertility, and in addition to premature spermiogenesis, many mutant sperm fail to activate altogether. The hc198 mutation is semidominant, inducing a more severe loss of fertility than do null alleles generated by CRISPR-associated protein 9 (Cas9) technology. The hc198 mutation affects an major sperm protein (MSP) domain, altering a conserved amino acid residue in a β-strand that mediates MSP–MSP dimerization. Both N- and C-terminal SPE-47 reporters associate with the forming fibrous body (FB)-membranous organelle, a specialized sperm organelle that packages MSP and other components during spermatogenesis. Once the FB is fully formed, the SPE-47 reporters dissociate and disappear. SPE-47 reporter localization is not altered by either the hc198 mutation or a C-terminal truncation deleting the MSP domain. The disappearance of SPE-47 reporters prior to the formation of spermatids requires a reevaluation of the brake model for prevention of premature spermatid activation.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号