首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   28篇
  国内免费   1篇
  2023年   2篇
  2022年   2篇
  2021年   10篇
  2020年   4篇
  2019年   6篇
  2018年   8篇
  2017年   4篇
  2016年   8篇
  2015年   22篇
  2014年   15篇
  2013年   20篇
  2012年   15篇
  2011年   16篇
  2010年   16篇
  2009年   10篇
  2008年   17篇
  2007年   18篇
  2006年   12篇
  2005年   14篇
  2004年   11篇
  2003年   9篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1996年   1篇
  1993年   4篇
  1992年   1篇
  1982年   1篇
  1979年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有266条查询结果,搜索用时 31 毫秒
101.
The nonessential regions in bacterial chromosomes are ill-defined due to incomplete functional information. Here, we establish a comprehensive repertoire of the genome regions that are dispensable for growth of Bacillus subtilis in a variety of media conditions. In complex medium, we attempted deletion of 157 individual regions ranging in size from 2 to 159 kb. A total of 146 deletions were successful in complex medium, whereas the remaining regions were subdivided to identify new essential genes (4) and coessential gene sets (7). Overall, our repertoire covers ∼76% of the genome. We screened for viability of mutant strains in rich defined medium and glucose minimal media. Experimental observations were compared with predictions by the iBsu1103 model, revealing discrepancies that led to numerous model changes, including the large-scale application of model reconciliation techniques. We ultimately produced the iBsu1103V2 model and generated predictions of metabolites that could restore the growth of unviable strains. These predictions were experimentally tested and demonstrated to be correct for 27 strains, validating the refinements made to the model. The iBsu1103V2 model has improved considerably at predicting loss of viability, and many insights gained from the model revisions have been integrated into the Model SEED to improve reconstruction of other microbial models.  相似文献   
102.
Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair (NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of γH2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase IIα with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions.  相似文献   
103.
Normalization of fluorescence-based quantitative real-time PCR (qPCR) data varies across quantitative gene expression studies, despite its integral role in accurate data quantification and interpretation. Identification of suitable reference genes plays an essential role in accurate qPCR normalization, as it ensures that uncorrected gene expression data reflect normalized data. The reference residual normalization (RRN) method presented here is a modified approach to conventional 2−ΔΔCtqPCR normalization that increases mathematical transparency and incorporates statistical assessment of reference gene stability. RRN improves mathematical transparency through the use of sample-specific reference residuals (RRi) that are generated from the mean Ct of one or more reference gene(s) that are unaffected by treatment. To determine stability of putative reference genes, RRN uses ANOVA to assess the effect of treatment on expression and subsequent equivalence-threshold testing to establish the minimum permitted resolution. Step-by-step instructions and comprehensive examples that demonstrate the influence of reference gene stability on target gene normalization and interpretation are provided. Through mathematical transparency and statistical rigor, RRN promotes compliance with Minimum Information for Quantitative Experiments and, in so doing, provides increased confidence in qPCR data analysis and interpretation.  相似文献   
104.

Background  

Bacillus subtilis is an organism of interest because of its extensive industrial applications, its similarity to pathogenic organisms, and its role as the model organism for Gram-positive, sporulating bacteria. In this work, we introduce a new genome-scale metabolic model of B. subtilis 168 called iBsu1103. This new model is based on the annotated B. subtilis 168 genome generated by the SEED, one of the most up-to-date and accurate annotations of B. subtilis 168 available.  相似文献   
105.

Background

The cold and menthol receptor, TRPM8, is a non-selective cation channel expressed in a subset of peripheral neurons that is responsible for neuronal detection of environmental cold stimuli. It was previously shown that members of the transient receptor potential (TRP) family of ion channels are translocated toward the plasma membrane (PM) in response to agonist stimulation. Because the spatial and temporal dynamics of cold receptor cell-surface residence may determine neuronal activity, we hypothesized that the movement of TRPM8 to and from the PM might be a regulated process. Single particle tracking (SPT) is a useful tool for probing the organization and dynamics of protein constituents in the plasma membrane.

Methodology/Principal Findings

We used SPT to study the receptor dynamics and describe membrane/near-membrane behavior of particles containing TRPM8-EGFP in transfected HEK-293T and F-11 cells. Cells were imaged using total internal reflection fluorescence (TIRF) microscopy and the 2D and 3D trajectories of TRPM8 molecules were calculated by analyzing mean-square particle displacement against time. Four characteristic types of motion were observed: stationary mode, simple Brownian diffusion, directed motion, and confined diffusion. In the absence of cold or menthol to activate the channel, most TRPM8 particles move in network covering the PM, periodically lingering for 2–8 s in confined microdomains of about 800 nm radius. Removing cholesterol with methyl-beta-cyclodextrin (MβCD) stabilizes TRPM8 motion in the PM and is correlated with larger TRPM8 current amplitude that results from an increase in the number of available channels without a change in open probability.

Conclusions/Significance

These results reveal a novel mechanism for regulating TRPM8 channel activity, and suggest that PM dynamics may play an important role in controlling electrical activity in cold-sensitive neurons.  相似文献   
106.
beta-carboline alkaloids are found in several medicinal plants and display a variety of actions on the central nervous, muscular and cardiovascular systems. The aim of the present study was to evaluate the effects of systemic administration of beta-carboline alkaloids on object recognition in mice. Adult Swiss mice received an intra-peritoneal injection (i.p.) of alkaloids (1.0, 2.5 or 5.0 mg/kg) 30 min before training in an object recognition task. The fully aromatic beta-carbolines, harmine and harmol, induced an enhancement of short-term memory (STM) at all doses tested when compared to controls. Harmaline, a dihydro beta-carboline and inverse agonist of the MK-801 binding site on the N-methyl-d-aspartate (NMDA) receptor, also induced an enhancement of both short-term memory (STM) and long-term memory (LTM). These results demonstrate that systemic administration of beta-carboline alkaloids can improve object recognition memory in mice.  相似文献   
107.
The Hedgehog (Hh) and Notch signal transduction pathways control a variety of developmental processes including cell fate choice, differentiation, proliferation, patterning and boundary formation. Because many components of these pathways are conserved, it was predicted and confirmed that pathway components are largely intact in the sea urchin genome. Spatial and temporal location of these pathways in the embryo, and their function in development offer added insight into their mechanistic contributions. Accordingly, all major components of both pathways were identified and annotated in the sea urchin Strongylocentrotus purpuratus genome and the embryonic expression of key components was explored. Relationships of the pathway components, and modifiers predicted from the annotation of S. purpuratus, were compared against cnidarians, arthropods, urochordates, and vertebrates. These analyses support the prediction that the pathways are highly conserved through metazoan evolution. Further, the location of these two pathways appears to be conserved among deuterostomes, and in the case of Notch at least, display similar capacities in endomesoderm gene regulatory networks. RNA expression profiles by quantitative PCR and RNA in situ hybridization reveal that Hedgehog is produced by the endoderm beginning just prior to invagination, and signals to the secondary mesenchyme-derived tissues at least until the pluteus larva stage. RNA in situ hybridization of Notch pathway members confirms that Notch functions sequentially in the vegetal-most secondary mesenchyme cells and later in the endoderm. Functional analyses in future studies will embed these pathways into the growing knowledge of gene regulatory networks that govern early specification and morphogenesis.  相似文献   
108.
Much has been published on the non-enzymatic antioxidant L-ascorbic acid (vitamin C), but even so its interaction with endogenous cellular defense systems has not yet been fully elucidated. Our study investigated the antioxidant activity of L-ascorbic acid in wild-type strain EG103 (SOD) Saccharomyces cerevisiae and isogenic mutant strains deficient in cytosolic superoxide dismutase (sod1delta), mitochondrial superoxide dismutase (sod2delta) or both (sod1delta sod2delta), metabolizing aerobically or anaerobically with and without the stressing agent paraquat. The results show that during both aerobic and anaerobic metabolism there was a significant increase in the survival of both wild-type S. cerevisiae cells and the mutant cells (sod1delta, sod2delta and sod1delta sod2delta) when pretreated with L-ascorbic acid before exposure to paraquat. Exposure to paraquat resulted in higher catalase activity but this significantly decreased when the cells were pre-treated with L-ascorbic acid. These results demonstrate that due to the damage caused by paraquat, the antioxidant protection of L-ascorbic acid seems to be mediated by catalase levels in yeast cells.  相似文献   
109.
Crystallographic and modelling data, in conjunction with a medicinal chemistry template-hopping approach, led to the identification of a series of novel and potent inhibitors of human cyclin-dependent kinase 2 (CDK2), with selectivity over glycogen synthase kinase-3beta (GSK-3beta). One example had a CDK2 IC(50) of 120 nM and showed selectivity over GSK-3beta of 167-fold.  相似文献   
110.
Ethanol is used in a variety of topical products. It is known to enhance the permeability of the skin by altering the ability of the stratum corneum (SC) intercellular membranes to form an effective barrier. In addition, ethanol and other alcohols are key components of antiseptic gels currently used for hand wash. Using infrared and deuterium NMR spectroscopy as well as calorimetry, we have investigated the effect of ethanol on a model membrane composed of lipids representing the three classes of SC lipids, an equimolar mixture of N-palmitoylsphingosine (ceramide), palmitic acid and cholesterol. Ethanol is found to influence the membrane in a dose dependent manner, disrupting packing and increasing lipid motion at low concentrations and selectively extracting lipids at moderate concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号