首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   17篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   12篇
  2012年   8篇
  2011年   7篇
  2010年   10篇
  2009年   6篇
  2008年   2篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   7篇
  1998年   7篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有143条查询结果,搜索用时 31 毫秒
61.
It has long been known that the level of radiosensitivity between individuals covers a considerable range. This range is reflected in analysis of patient cell lines with some cell lines showing significantly reduced sensitivity to in vitro radiation exposure. Our increased exposure to radiation from diagnostic medical procedures and other life style changes has raised concerns that there may be individuals who are at an elevated risk from the harmful impact of acute or chronic low dose radiation exposure. Additionally, a subset of patients show an enhanced normal tissue response following radiotherapy, which can cause significant discomfort and, at the extreme, be life threatening. It has long been realised that the ability to identify sensitive individuals and to understand the mechanistic basis underlying the range of sensitivity within the population is important. A reduced ability to efficiently repair DNA double strand breaks (DSB) and/or activate the DSB damage response underlies some, although not necessarily all, of this sensitivity. In this article, we consider the utility of the recently developed γH2AX foci analysis to provide insight into radiation sensitivity within the population. We consider the nature of sensitivity including the impact of radiation on cell survival, tissue responses and carcinogenesis and the range of responses within the population. We overview the current utility of the γH2AX assay for assessing the efficacy of the DNA damage response to low and high dose radiation and its potential future exploitation.  相似文献   
62.
63.

Background  

Pairing of homologous chromosomes at meiosis is an important requirement for recombination and balanced chromosome segregation among the products of meiotic division. Recombination is initiated by double strand breaks (DSBs) made by Spo11 followed by interaction of DSB sites with a homologous chromosome. This interaction requires the strand exchange proteins Rad51 and Dmc1 that bind to single stranded regions created by resection of ends at the site of DSBs and promote interactions with uncut DNA on the homologous partner. Recombination is also considered to be dependent on factors that stabilize interactions between homologous chromosomes. In budding yeast Hop2 and Mnd1 act as a complex to promote homologous pairing and recombination in conjunction with Rad51 and Dmc1.  相似文献   
64.
65.
66.
Immunological disorders and DNA repair   总被引:4,自引:0,他引:4  
O'Driscoll M  Jeggo P 《Mutation research》2002,509(1-2):109-126
Cellular DNA continuously incurs damage and a range of damage response mechanisms function to maintain genomic integrity in the face of this onslaught. During the development of the immune response, the cell utilises three defined processes, V(D)J recombination, class switch recombination and somatic hypermutation, to create genetic diversity in developing T and B cells. Curiously, the damage response mechanisms employed to maintain genomic stability in somatic cells have been exploited and adapted to help generate diversity during immune development. As a consequence of this overlap, there is mounting evidence that disorders attributable to impaired damage response mechanisms display associated immunodeficiency. Since double strand breaks (DSB) are created during at least two of the mechanisms used to create immunoglobulin diversity, namely V(D)J recombination and class switch recombination, it is not surprising that disorders associated with defects in the response to double strand breaks are those most associated with immunodeficiency. Here, we review the steps involved in the generation of genetic diversity during immune development with a focus on the damage response mechanisms employed and then consider human immunodeficiency disorders associated with impaired damage response mechanisms.  相似文献   
67.
The Sleeping Beauty (SB) element is a useful tool to probe transposon-host interactions in vertebrates. We investigated requirements of DNA repair factors for SB transposition in mammalian cells. Factors of nonhomologous end joining (NHEJ), including Ku, DNA-PKcs, and Xrcc4 as well as Xrcc3/Rad51C, a complex that functions during homologous recombination, are required for efficient transposition. NHEJ plays a dominant role in repair of transposon excision sites in somatic cells. Artemis is dispensable for transposition, consistent with the lack of a hairpin structure at excision sites. Ku physically interacts with the SB transposase. DNA-PKcs is a limiting factor for transposition and, in addition to repair, has a function in transposition that is independent from its kinase activity. ATM is involved in excision site repair and affects transposition rates. The overlapping but distinct roles of repair factors in transposition and in V(D)J recombination might influence the outcomes of these mechanistically similar processes.  相似文献   
68.
DNA-PKcs, the catalytic subunit of DNA-dependent protein kinase (DNA-PK), has a phosphoinositol 3-kinase (PI 3-K) domain close to its C-terminus. Cell lines derived from the SCID mouse have been utilised as a model DNA-PKcs-defective system. The SCID mutation results in truncation of DNA-Pkcs at the extreme C-terminus leaving the PI 3-K domain intact. The mutated protein is expressed at low levels in most SCID cell lines, leaving open the question of whether the mutation abolishes kinase activity. Here, we show that a SCID cell line that expresses the mutant protein normally has dramatically impaired kinase activity. We estimate that the residual kinase activity typically present in SCID fibroblast cell lines is at least two orders of magnitude less than that found in control cells. Our results substantiate evidence that DNA-PKcs kinase activity is required for DSB rejoining and V(D)J recombination and show that the extreme C-terminal region of DNA-PKcs, present in PI 3-K-related protein kinases but absent in bona fide PI 3 lipid kinases, is required for DNA-PKcs to function as a protein kinase. We also show that expression of mutant DNA-PKcs protein confers a growth disadvantage, providing an explanation for the lack of DNA-PKcs expression in most SCID cell lines.  相似文献   
69.
Nijmegen breakage syndrome (NBS) is characterised by microcephaly, developmental delay, characteristic facial features, immunodeficiency and radiosensitivity. Nbs1, the protein defective in NBS, functions in ataxia telangiectasia mutated protein (ATM)-dependent signalling likely facilitating ATM phosphorylation events. While NBS shares overlapping characteristics with ataxia telangiectasia, it also has features overlapping with ATR-Seckel (ATR: ataxia-telangiectasia and Rad3-related protein) syndrome, a subclass of Seckel syndrome mutated in ATR. We show that Nbs1 also facilitates ATR-dependent phosphorylation. NBS cell lines show a similar defect in ATR phosphorylation of Chk1, c-jun and p-53 in response to UV irradiation- and hydroxyurea (HU)-induced replication stalling. They are also impaired in ubiquitination of FANCD2 after HU treatment, which is ATR dependent. Following HU-induced replication arrest, NBS and ATR-Seckel cells show similarly impaired G2/M checkpoint arrest and an impaired ability to restart DNA synthesis at stalled replication forks. Moreover, NBS cells fail to retain ATR in the nucleus following HU treatment and extraction. Our findings suggest that Nbs1 functions in both ATR- and ATM-dependent signalling. We propose that the NBS clinical features represent the result of these combined defects.  相似文献   
70.
Growth, mortality, recruitment and relative yield per recruit of Sarotherodon galilaeus galilaeus from Lakes Doukon and Togbadji were studied. Data on total length, total weight and sex were recorded on a monthly basis between January and December 2013 for S. g. galilaeus captured by local fishers. The estimated asymptotic lengths L were 26.2 and 23.6?cm for Lakes Doukon and Togbadji, respectively, while the growth rate K was 0.73 in Lake Doukon and 0.87 in Lake Togbadji. Estimates of fishing mortality, 0.27 and 0.47 y?1 for Doukon and Togbadji, respectively, were low relative to natural mortality, 1.51 and 1.74 y?1, respectively. Sizes at first sexual maturity were 12.8 and 13.2?cm for females and males, respectively, in Lake Doukon, and 11.5 and 12.4?cm for females and males, respectively, in Lake Togbadji. The size at first capture was estimated at 13.3 and 12.7?cm for Lakes Doukon and Togbadji, respectively, which, in the light of the size at maturity estimates, indicates that fish spawn at least once before capture. The current exploitation rates of 0.15 for Lake Doukon and 0.21 for Lake Togbadji suggest that their stocks of S. g. galilaeus are not overexploited in either lake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号