首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   23篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   8篇
  2014年   6篇
  2013年   10篇
  2012年   22篇
  2011年   22篇
  2010年   5篇
  2009年   10篇
  2008年   11篇
  2007年   20篇
  2006年   17篇
  2005年   13篇
  2004年   11篇
  2003年   16篇
  2002年   21篇
  2001年   1篇
  2000年   3篇
  1999年   8篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
排序方式: 共有296条查询结果,搜索用时 18 毫秒
51.
52.
Role of Organotellurium Species in Tellurium Neuropathy   总被引:3,自引:0,他引:3  
Exposure of weanling rats to a diet containing 1% elemental tellurium causes segmental demyelination of peripheral nerve, and an inhibition of squalene epoxidase. This inhibition is thought to be the mechanism of action leading to demyelination. Tellurite appears to be the active inhibitory species in a cell-free system but the active species in vivo is unknown. We examined potassium tellurite (K2TeO3) and three organotellurium compounds for their ability to inhibit squalene epoxidase in Schwann cell cultures and to induce demyelination in weanling rats. K2TeO3 had no effect on squalene epoxidase activity in cultured Schwann cells and caused no demyelination in vivo. All three organotellurium compounds caused inhibition of squalene epoxidase in vitro and caused demyelination in vivo. (CH3)2TeCl2 was the most potent of these compounds and its neuropathy most resembled that caused by elemental tellurium. These data are consistent with the hypothesis that tellurium-induced demyelination is a result of squalene epoxidase inhibition and suggest that a dimethyltelluronium compound may be the neurotoxic species presented to Schwann cells in vivo.  相似文献   
53.
The distribution of interlocus genotypic combinations was examined in Mytilus edulis for interdependence between two loci synthesizing functionally related isoenzymes. There is significant dependence between the Leucine Aminopeptidase and Aminopeptidase loci, which we attribute to epistasis, since the magnitude of dependency varies with age. Furthermore, dependency varies in magnitude with position in the intertidal zone from which samples were taken, suggesting that epistasis is a function of the combination of certain non-homologous alleles as well as of the environmental circumstance in which the combinations occur.  相似文献   
54.
Custom-made zinc-finger nucleases (ZFNs) can induce targeted genome modifications with high efficiency in cell types including Drosophila, C. elegans, plants, and humans. A bottleneck in the application of ZFN technology has been the generation of highly specific engineered zinc-finger arrays. Here we describe OPEN (Oligomerized Pool ENgineering), a rapid, publicly available strategy for constructing multifinger arrays, which we show is more effective than the previously published modular assembly method. We used OPEN to construct 37 highly active ZFN pairs which induced targeted alterations with high efficiencies (1%-50%) at 11 different target sites located within three endogenous human genes (VEGF-A, HoxB13, and CFTR), an endogenous plant gene (tobacco SuRA), and a chromosomally integrated EGFP reporter gene. In summary, OPEN provides an "open-source" method for rapidly engineering highly active zinc-finger arrays, thereby enabling broader practice, development, and application of ZFN technology for biological research and gene therapy.  相似文献   
55.
Recently, a new class (often referred to as SPRMs: selective progesterone receptor modulators) of progesterone receptor ligands with mixed agonist/antagonist properties has been described. Such compounds are envisaged, for example, as treatment for endometriosis, uterine fibroids, and leiomyomas. Existing SPRMs include Asoprisnil 1 and Uliprisnil acetate 2. In our hands, however, these compounds proved to have a predominantly or exclusively antagonistic in vitro profile, which may make this type of compound less attractive, for example, as contraceptives. We therefore aimed at a class of mixed-profile compounds that would show a more evenly balanced agonist/antagonist profile. A novel class of 11beta-[4-(heteroaryl)phenyl]-substituted pregnanes was identified that displayed the desired balance. Contrary to known SPRMs, this novel class of MPP (mixed-profile progestagen) was found to have a truly mixed activity, including a sizeable agonist component.  相似文献   
56.
57.
Eukaryotic Cu,Zn-superoxide dismutases (SOD1s) are generally thought to acquire the essential copper cofactor and intramolecular disulfide bond through the action of the CCS copper chaperone. However, several metazoan SOD1s have been shown to acquire activity in vivo in the absence of CCS, and the Cu,Zn-SOD from Caenorhabditis elegans has evolved complete independence from CCS. To investigate SOD1 activation in the absence of CCS, we compared and contrasted the CCS-independent activation of C. elegans and human SOD1 to the strict CCS-dependent activation of Saccharomyces cerevisiae SOD1. Using a yeast expression system, both pathways were seen to acquire copper derived from cell surface transporters and compete for the same intracellular pool of copper. Like CCS, CCS-independent activation occurs rapidly with a preexisting pool of apo-SOD1 without the need for new protein synthesis. The two pathways, however, strongly diverge when assayed for the SOD1 disulfide. SOD1 molecules that are activated without CCS exhibit disulfide oxidation in vivo without oxygen and under copper-depleted conditions. The strict requirement for copper, oxygen, and CCS in disulfide bond oxidation appears exclusive to yeast SOD1, and we find that a unique proline at position 144 in yeast SOD1 is responsible for this disulfide effect. CCS-dependent and -independent pathways also exhibit differential requirements for molecular oxygen. CCS activation of SOD1 requires oxygen, whereas the CCS-independent pathway is able to activate SOD1s even under anaerobic conditions. In this manner, Cu,Zn-SOD from metazoans may retain activity over a wide range of physiological oxygen tensions.Oxygen is essential for aerobic respiration, but reactive byproducts of oxygen metabolism, such as the superoxide anion, can damage cellular molecules, including proteins, DNA, and lipids (13). SOD1s (copper- and zinc-containing superoxide dismutases) provide the primary defense against superoxide damage by catalytically removing it through a disproportionation reaction (4). This reaction involves redox cycling at the copper active site (5). SOD1s require several post-translational modifications to form an active molecule. Copper and zinc are bound by the enzyme, and an intramolecular disulfide bond is formed between two conserved cysteine residues. Although the zinc ion and disulfide bond are not directly involved in the disproportionation reaction, these modifications are required for proper stability and formation of the active site (610). The presence of an intramolecular disulfide bond is intriguing, given the fact that the cytosol favors reduced thiols.The activity of SOD1s in vivo is largely controlled through the aforementioned post-translational modifications. Most of what is currently known about activation of SOD1 in vivo has emerged through studies of the bakers'' yeast Saccharomyces cerevisiae SOD1. Here insertion of the catalytic copper requires the action of the copper chaperone for SOD3 (CCS) (11). CCS physically interacts with SOD1 to deliver the copper ion and catalyze the disulfide bond formation in an oxygen-dependent manner (1215). In fact, S. cerevisiae SOD1 (ySOD1) is completely dependent on CCS for insertion of the catalytic copper and oxidation of the disulfide bond (11, 15, 16).Although ySOD1 is dependent on CCS for activity, other eukaryotic SOD1s are not. Mouse and human SOD1 (hSOD1), when expressed in CCS−/− mouse fibroblasts and in ccs1Δ yeast, still retain some SOD1 activity (1719). Moreover, the genome for the nematode Caenorhabditis elegans does not contain a CCS-like gene, yet harbors several Cu,Zn-SODs. Previous studies with C. elegans SOD-1 (wSOD-1) have shown that this SOD is activated completely independently of CCS (20). Together, these studies present a strong case for a second SOD1 activation mechanism independent of CCS.There must be inherent differences in SOD1 sequences that dictate whether the enzyme uses CCS or the CCS-independent pathway or both. Through targeted mutagenesis, sequences near the C terminus have been previously identified as being important (19). Yeast SOD1 contains dual prolines at positions 142 and 144, which when mutated in combination allow for CCS-independent activation. Conversely, hSOD1 and wSOD-1 contain non-proline residues at these positions, and if dual prolines are introduced, then CSS-independent activation is blocked (19, 20). How this pair of prolines influences SOD1 activation is not understood.It is interesting that nature has developed two activation mechanisms for such a key enzyme in oxidative stress protection, and these are not likely to be redundant. It was previously predicted that the two pathways draw upon distinct sources of copper (19), since the addition of the catalytic copper ion is limiting for enzyme activation. However, since disulfide oxidation is also limiting for enzyme activity, it is possible that the two pathways diverge at this level. In the current study, we investigate the requirements and regulation of the CCS-dependent and -independent SOD1 activation pathways. Our results strongly indicate that the two pathways do not diverge at the level of upstream copper transporter sources or the kinetics of copper incorporation into SOD1 but rather at the level of disulfide bond formation. Copper is required for CCS-mediated disulfide bond oxidation in yeast SOD1, whereas SOD1s that can be activated without CCS show no such requirement for copper in disulfide oxidation. Moreover, oxygen is required for enzyme activation through CCS, but the CCS-independent pathway is able to bypass the need for molecular oxygen. This allows for significant SOD1 activity to be found at a variety of oxygen concentrations by utilizing two activation pathways.  相似文献   
58.
We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform--a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting dicer-like (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome.  相似文献   
59.
Liu XY  Liu ZC  Sun YG  Ross M  Kim S  Tsai FF  Li QF  Jeffry J  Kim JY  Loh HH  Chen ZF 《Cell》2011,147(2):447-458
Spinal opioid-induced itch, a prevalent side effect of pain management, has been proposed to result from pain inhibition. We now report that the μ-opioid receptor (MOR) isoform MOR1D is essential for morphine-induced scratching (MIS), whereas the isoform MOR1 is required only for morphine-induced analgesia (MIA). MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, relaying itch information. We show that morphine triggers internalization of both GRPR and MOR1D, whereas GRP specifically triggers GRPR internalization and morphine-independent scratching. Providing potential insight into opioid-induced itch prevention, we demonstrate that molecular and pharmacologic inhibition of PLCβ3 and IP3R3, downstream effectors of GRPR, specifically block MIS but not MIA. In addition, blocking MOR1D-GRPR association attenuates MIS but not MIA. Together, these data suggest that opioid-induced itch is an active process concomitant with but independent of opioid analgesia, occurring via the unidirectional cross-activation of GRPR signaling by MOR1D heterodimerization.  相似文献   
60.
Transient receptor potential (TRP) ankyrin 1 (TRPA1) is a Ca(2+)-permeant, nonselective cationic channel. It is predominantly expressed in the C afferent sensory nerve fibers of trigeminal and dorsal root ganglion neurons and is highly coexpressed with the nociceptive ion channel transient receptor potential vanilloid 1 (TRPV1). Several physical and chemical stimuli have been shown to activate the channel. In this study, we have used electrophysiological techniques and behavioral models to characterize the properties of TRPA1. Whole cell TRPA1 currents induced by brief application of lower concentrations of N-methyl maleimide (NMM) or allyl isothiocyanate (AITC) can be reversed readily by washout, whereas continuous application of higher concentrations of NMM or AITC completely desensitized the currents. The deactivation and desensitization kinetics differed between NMM and AITC. TRPA1 current amplitude increased with repeated application of lower concentrations of AITC, whereas saturating concentrations of AITC induced tachyphylaxis, which was more pronounced in the presence of extracellular Ca(2+). The outward rectification exhibited by native TRPA1-mediated whole cell and single-channel currents was minimal as compared with other TRP channels. TRPA1 currents were negatively modulated by protons and polyamines, both of which activate the heat-sensitive channel, TRPV1. Interestingly, neither protein kinase C nor protein kinase A activation sensitized AITC-induced currents, but each profoundly sensitized capsaicin-induced currents. Current-clamp experiments revealed that AITC produced a slow and sustained depolarization as compared with capsaicin. TRPA1 is also expressed at the central terminals of nociceptors at the caudal spinal trigeminal nucleus. Activation of TRPA1 in this area increases the frequency and amplitude of miniature excitatory or inhibitory postsynaptic currents. In behavioral studies, intraplantar and intrathecal administration of AITC induced more pronounced and prolonged changes in nociceptive behavior than those induced by capsaicin. In conclusion, the characteristics of TRPA1 we have delineated suggest that it might play a unique role in nociception.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号