首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1741篇
  免费   224篇
  2023年   9篇
  2021年   18篇
  2020年   16篇
  2019年   17篇
  2018年   28篇
  2017年   25篇
  2016年   33篇
  2015年   80篇
  2014年   73篇
  2013年   87篇
  2012年   108篇
  2011年   127篇
  2010年   90篇
  2009年   69篇
  2008年   112篇
  2007年   123篇
  2006年   103篇
  2005年   112篇
  2004年   114篇
  2003年   99篇
  2002年   116篇
  2001年   34篇
  2000年   19篇
  1999年   26篇
  1998年   19篇
  1997年   15篇
  1996年   12篇
  1995年   16篇
  1994年   15篇
  1993年   17篇
  1992年   15篇
  1991年   12篇
  1990年   12篇
  1989年   16篇
  1988年   6篇
  1987年   13篇
  1986年   14篇
  1985年   8篇
  1984年   15篇
  1983年   7篇
  1982年   9篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1975年   8篇
  1974年   6篇
  1973年   8篇
  1972年   15篇
排序方式: 共有1965条查询结果,搜索用时 15 毫秒
91.
92.
Unraveling the functional roles of proteins is a major challenge facing the postgenome researcher. Advances towards this goal have been made through the development of both chemical and biochemical tools for monitoring protein activity. Recently, a myriad of fluorescence-based imaging tools have emerged for in vitro, in vivo and whole animal applications. These tools have provided methods to monitor the spatial and temporal distribution of proteins and bioorganic molecules dynamically. Here, recent advances in chemical and biochemical techniques that allow the detection of enzymatic activity within intact cells and in vivo are reviewed. Such technologies have the potential to be integrated into drug-development programs to facilitate both the functional validation of pharmaceutical targets and the treatment of human disease.  相似文献   
93.
Many point mutations in human Cu,Zn superoxide dismutase (SOD) cause familial amyotrophic lateral sclerosis (FALS), a fatal neurodegenerative disorder in heterozygotes. Here we show that these mutations cluster in protein regions influencing architectural integrity. Furthermore, crystal structures of SOD wild-type and FALS mutant H43R proteins uncover resulting local framework defects. Characterizations of beta-barrel (H43R) and dimer interface (A4V) FALS mutants reveal reduced stability and drastically increased aggregation propensity. Moreover, electron and atomic force microscopy indicate that these defects promote the formation of filamentous aggregates. The filaments resemble those seen in neurons of FALS patients and bind both Congo red and thioflavin T, suggesting the presence of amyloid-like, stacked beta-sheet interactions. These results support free-cysteine-independent aggregation of FALS mutant SOD as an integral part of FALS pathology. They furthermore provide a molecular basis for the single FALS disease phenotype resulting from mutations of diverse side-chains throughout the protein: many FALS mutations reduce structural integrity, lowering the energy barrier for fibrous aggregation.  相似文献   
94.
This work describes analyses of the function of the murid herpesvirus 4 strain 68 (MHV-68) M2 gene. A frameshift mutation was made in the M2 open reading frame that caused premature termination of translation of M2 after amino acid residue 90. The M2 mutant showed no defect in productive replication in vitro or in lungs after infection of mice. Likewise, the characteristic transient increase in spleen cell number, Vbeta4 T-cell-receptor-positive CD8(+) T-cell mononucleosis, and establishment of latency were unaffected. However, the M2 mutant virus was defective in its ability to cause the transient sharp rise in latently infected cells normally seen in the spleen after infection of mice. We also demonstrate that expression of M2 is restricted to B cells in the spleen and that M2 encodes a 30-kDa protein localizing predominantly in the cytoplasm and plasma membrane of B cells.  相似文献   
95.
96.
Amyloid fibrils, such as those found in Alzheimer's and the gelsolin amyloid diseases, result from the misassembly of peptides produced by either normal or aberrant intracellular proteolytic processing. A paper in this issue by Marks and colleagues (Berson et al., 2003) demonstrates that intra-melanosome fibrils are formed through normal biological proteolytic processing of an integral membrane protein. The resulting peptide fragment assembles into fibrils promoting the formation of melanin pigment granules. These results, along with the observation that amyloid fibril formation by bacteria is highly orchestrated, suggest that fibril formation is an evolutionary conserved biological pathway used to generate natural product nanostructures.  相似文献   
97.
A microplate assay specific for the enzyme aggrecanase   总被引:1,自引:0,他引:1  
We have identified a 41-residue peptide, bracketing the aggrecanase cleavage site of aggrecan, that serves as a specific substrate for this enzyme family. Biotinylation of the peptide allowed its immobilization onto streptavidin-coated plates. Aggrecanase-mediated hydrolysis resulted in an immobilized product that reveals an N-terminal neoepitope, recognized by the specific antibody BC-3. This assay is highly specific for aggrecanases; MMPs were inactive in this assay. Reduction of the peptide size below 30 amino acids resulted in a significant diminution of activity. Using the immobilized 41-residue peptide as a substrate, we have developed a 96-well microplate-based assay that can be conveniently used for high-throughput screening of samples for aggrecanase activity and for discovery of inhibitors of aggrecanase activity.  相似文献   
98.
Zhang Q  Kelly JW 《Biochemistry》2003,42(29):8756-8761
Conservative mutation of transthyretin's surface residues can predispose an individual to familial amyloidosis by dramatically changing the energetics of misfolding. Senile systemic amyloidosis (SSA), however, cannot be explained in this fashion because wild-type (WT) transthyretin (TTR) misfolds and misassembles into amyloid. Since various modifications of the SH functionality of Cys10 have been reported in humans, we sought to understand the extent to which these modifications alter the stability and amyloidosis of WT TTR as a possible explanation for SSA. Homotetrameric Cys10 TTR variants, including TTR-Cys, TTR-GSH, TTR-CysGly, and S-sulfonated TTR, were chemically synthesized starting with WT TTR. The TTR-Cys, TTR-GSH, and TTR-CysGly isoforms are more amyloidogenic than WT at the higher end of the acidic pH range (pH 4.4-5.0), and they are similarly destabilized relative to WT TTR toward urea denaturation. They exhibit rates of urea-mediated tetramer dissociation (pH 7) and MeOH-facilitated fibril formation similar to those of WT TTR. Under mildly acidic conditions (pH 4.8), the amyloidogenesis rates of the mixed disulfide TTR variants are much faster than the WT rate. S-Sulfonated TTR is less amyloidogenic and forms fibrils more slowly than WT under acidic conditions, yet it exhibits a stability and rates of tetramer dissociation similar to those of WT TTR when subjected to urea denaturation. Conversion of the Cys10 SH group to a mixed disulfide with the amino acid Cys, the CysGly peptide, or glutathione increases amyloidogenicity and the amyloidogenesis rate above pH 4.6, conditions under which TTR probably forms fibrils in humans. Hence, these modifications may play an important role in human amyloidosis.  相似文献   
99.
The endocannabinoid arachidonylethanolamide (AEA, anandamide) is an endogenous ligand for the cannabinoid receptors and has been shown to be oxygenated by cyclooxygenase-2 (COX-2). We examined the structural requirements for COX-mediated, AEA oxygenation using a number of substrate analogues and site-directed mutants of COX-2. Fourteen AEA analogues were synthesized and tested as COX substrates. These studies identified the hydroxyl moiety of AEA as a critical determinant in the ability of COX enzymes to effect robust endocannabinoid oxygenation. In addition, these studies suggest that subtle structural modifications of AEA analogues near the ethanolamide moiety can result in pronounced changes in their ability to serve as COX-2 substrates. Site-directed mutagenesis studies have permitted the development of a model of AEA binding within the COX-2 active site. As with arachidonic acid, the omega-terminus of AEA binds in a hydrophobic alcove near the top of the COX-2 active site. The polar ethanolamide moiety of AEA, like the carboxylate of arachidonate, interacts with Arg-120 at the bottom of the COX-2 active site. Mutation of Tyr-385 prevents AEA oxygenation, suggesting that, as in the case of other COX substrates, AEA metabolism is initiated by Tyr-385-mediated hydrogen abstraction. Thus, AEA binds within the COX-2 active site in a conformation roughly similar to that of arachidonic acid. However, important differences have been identified that account for the isoform selectivity of AEA oxygenation. Importantly, the COX-2 side pocket and Arg-513 in particular are critical determinants of the ability of COX-2 to efficiently generate prostaglandin H(2) ethanolamide. The reduced efficiency of COX-1-mediated, AEA oxygenation can thus be explained by the absence of an arginine residue at position 513 in this isoform. Mutational analysis of Leu-531, an amino acid located directly across from the COX-2 side pocket, suggests that AEA is shifted away from this hydrophobic residue and toward Arg-513 relative to arachidonic acid. Coupled with earlier observations with the endocannabinoid 2-arachidonylglycerol, these results indicate that one possible function of the highly conserved COX-2 active site side pocket is to promote endocannabinoid oxygenation.  相似文献   
100.
DivIVA is involved in Bacillus subtilis cell division and is located at the cell poles. Previous experiments suggested that the cell division proteins FtsZ and PBP 2B are required for polar targeting of DivIVA. By using outgrowing spores, we show that DivIVA accumulates at the cell poles independent of the presence of FtsZ or PBP 2B.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号