首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3495篇
  免费   210篇
  2022年   7篇
  2021年   27篇
  2020年   16篇
  2019年   12篇
  2018年   25篇
  2017年   25篇
  2016年   57篇
  2015年   78篇
  2014年   115篇
  2013年   156篇
  2012年   190篇
  2011年   203篇
  2010年   133篇
  2009年   141篇
  2008年   212篇
  2007年   237篇
  2006年   203篇
  2005年   211篇
  2004年   207篇
  2003年   215篇
  2002年   222篇
  2001年   49篇
  2000年   33篇
  1999年   55篇
  1998年   76篇
  1997年   61篇
  1996年   45篇
  1995年   54篇
  1994年   43篇
  1993年   40篇
  1992年   55篇
  1991年   40篇
  1990年   35篇
  1989年   25篇
  1988年   30篇
  1987年   25篇
  1986年   26篇
  1985年   31篇
  1984年   35篇
  1983年   26篇
  1982年   31篇
  1981年   23篇
  1980年   25篇
  1979年   18篇
  1978年   19篇
  1977年   20篇
  1976年   21篇
  1975年   17篇
  1974年   10篇
  1973年   16篇
排序方式: 共有3705条查询结果,搜索用时 15 毫秒
971.
Segregation analyses were performed using both maximum likelihood – via a Quasi Newton algorithm – (ML-QN) and Bayesian – via Gibbs sampling – (Bayesian-GS) approaches in the Chinese European Tiameslan pig line. Major genes were searched for average ultrasonic backfat thickness (ABT), carcass fat (X2 and X4) and lean (X5) depths, days from 20 to 100 kg (D20100), Napole technological yield (NTY), number of false (FTN) and good (GTN) teats, as well as total teat number (TTN). The discrete nature of FTN was additionally considered using a threshold model under ML methodology. The results obtained with both methods consistently suggested the presence of major genes affecting ABT, X2, NTY, GTN and FTN. Major genes were also suggested for X4 and X5 using ML-QN, but not the Bayesian-GS, approach. The major gene affecting FTN was confirmed using the threshold model. Genetic correlations as well as gene effect and genotype frequency estimates suggested the presence of four different major genes. The first gene would affect fatness traits (ABT, X2 and X4), the second one a leanness trait (X5), the third one NTY and the last one GTN and FTN. Genotype frequencies of breeding animals and their evolution over time were consistent with the selection performed in the Tiameslan line.  相似文献   
972.
This review focuses on natural and assisted prevention against lipid peroxidation in avian spermatozoa. The presence of high levels of n-6 polyunsaturated fatty acids (PUFAs) in the plasma membrane creates favorable conditions for the formation of peroxidative products, a major cause of membrane damage which may ultimately impair male fertility. However, a complex antioxidant system involving vitamin C, vitamin E and GSH is naturally present in avian semen. Coupled with a battery of enzymatic defenses (e.g., SOD, GSH-Px either Se- or non-Se-dependent), this system acts to prevent or restrict the formation and propagation of peroxides. The presence of specialized sites dedicated to prolonged sperm storage in avian females raises the question of durable protection of sperm membranes against peroxidation. Preliminary observations have revealed the presence of a specific antioxidant system at these sites in which vitamin C could exert a major role. From a practical standpoint, the extensive use of artificial insemination in poultry, along with the emergence in some species of workable techniques to cryopreserve spermatozoa, demand better control of peroxidation occurring in the plasma membrane of spermatozoa before or during storage. Dietary supplementation with vitamin E is effective in limiting lipid peroxidation of sperm plasma membranes, both in chickens and turkeys. In addition, organic Se with or without vitamin E stimulates Se-GSH-Px activity in seminal plasma. Preliminary observations in female chickens have also revealed the effectiveness of dietary supplementation with vitamin E, organic selenium or both to sustain fertility in aging flocks.  相似文献   
973.
974.
975.
A series of water-soluble polycationic dendrimers with a phosphoramidothioate backbone (P-dendrimers) was studied in human cell culture. Preliminary studies have shown that P-dendrimers of series 1 and 2, possessing N,N-diethyl-ethylenediamine hydrochloride functions at the surface, show rather moderate cytotoxicity toward HeLa, HEK 293, and HUVEC cells in a standard MTT assay in serum-containing medium, generally lower than lipofectin. The experiments of cellular uptake have shown the necessity for the presence of serum for transfection with P-dendrimers of series 1 and 2. These compounds efficiently delivered fluorescein-labeled oligodeoxyribonucleotide into HeLa cells in serum-containing medium, but they failed to do so in HUVEC cell culture. The dendrimers were found to be successful mediators of transfection of the HeLa cells with a DNA plasmid containing the functional gene of enhanced green fluorescent protein (EGFP).  相似文献   
976.
The bulge–helix–bulge (BHB) motif recognised by the archaeal splicing endonuclease is also found in the long processing stems of archaeal rRNA precursors in which it is cleaved to generate pre-16S and pre-23S rRNAs. We show that in two species, Archaeoglobus fulgidus and Sulfolobus solfataricus, representatives from the two major archaeal kingdoms Euryarchaeota and Crenarchaeota, respectively, the pre-rRNA spacers cleaved at the BHB motifs surrounding pre-16S and pre-23S rRNAs subsequently become ligated. In addition, we present evidence that this is accompanied by circularisation of ribosomal pre-16S and pre-23S rRNAs in both species. These data reveal a further link between intron splicing and pre-rRNA processing in Archaea, which might reflect a common evolutionary origin of the two processes. One spliced RNA species designated 16S-D RNA, resulting from religation at the BHB motif of 16S pre-rRNA, is a highly abundant and stable RNA which folds into a three-stem structure interrupted by two single-stranded regions as assessed by chemical probing. It spans a region of the pre-rRNA 5′ external transcribed spacer exhibiting a highly conserved folding pattern in Archaea. Surprisingly, 16S-D RNA contains structural motifs found in archaeal C/D box small RNAs and binds to the L7Ae protein, a core component of archaeal C/D box RNPs. This supports the notion that it might have an important but still unknown role in pre-rRNA biogenesis or might even target RNA molecules other than rRNA.  相似文献   
977.
Pathways to motor neuron degeneration in transgenic mouse models   总被引:5,自引:0,他引:5  
Robertson J  Kriz J  Nguyen MD  Julien JP 《Biochimie》2002,84(11):1151-1160
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurological disorder characterized by the selective loss of motor neurons. A pathological hallmark of both sporadic and familial ALS is the presence of abnormal accumulations of neurofilament and peripherin proteins in motor neurons. In the past decade, transgenic mouse approaches have been used to address the role of such cytoskeletal abnormalities in motor neuron disease and also to unravel the pathogenesis caused by mutations in the gene coding for superoxide dismutase 1 (SOD1) that account for ~20% of familial ALS cases. In mouse models, disparate effects could result from different types of intermediate filament (IF) aggregates. Perikaryal IF accumulations induced by the overexpression of any of the three wild-type neurofilament proteins were quite well tolerated by motor neurons. Indeed, perikaryal swellings provoked by NF-H overexpression can even confer protection against toxicity of mutant SOD1. Other types of IF aggregates seem neurotoxic, such as those found in transgenic mice overexpressing either peripherin or an assembly-disrupting NF-L mutant. Moreover, understanding the toxicity of SOD1 mutations has been surprisingly difficult. The analysis of transgenic mice expressing mutant SOD1 has yielded complex results, suggesting that multiple pathways may contribute to disease that include the involvement of non-neuronal cells.  相似文献   
978.
979.
The Kidd (JK) blood group locus encodes the urea transporter hUT-B1, which is expressed on human red blood cells and other tissues. The common JK*A/JK*B blood group polymorphism is caused by a single nucleotide transition G838A changing Asp-280 to Asn-280 on the polypeptide, and transfection of erythroleukemic K562 cells with hUT-B1 cDNAs carrying either the G838 or the A838 nucleotide substitutions resulted in the isolation of stable clones that expressed the Jk(a) or Jk(b) antigens, respectively, thus providing the first direct demonstration that the hUT-B1 gene encodes the Kidd blood group antigens. In addition, immunochemical analysis of red blood cells demonstrated that hUT-B1 also exhibits ABO determinants attached to the single N-linked sugar chain at Asn-211. Moreover, immunoadsorption studies, using inside-out and right-side-out red cell membrane vesicles as competing antigen, demonstrated that the C- and N-terminal ends of hUT-B1 are oriented intracellularly. Mutagenesis and functional studies by expression in Xenopus oocytes revealed that both cysteines Cys-25 and Cys-30 (but not alone) are essential for plasma membrane addressing. Conversely, the transport function was not affected by the JK*A/JK*B polymorphism, C-terminal deletion (residues 360-389), or mutation of the extracellular N-glycosylation consensus site and remains poorly para-chloromercuribenzene sulfonate (pCMBS)-sensitive. However, transport studies by stopped flow light scattering using Jk-K562 transfectants demonstrated that the hUT-B1-mediated urea transport is pCMBS-sensitive in an erythroid context, as reported previously for the transporter of human red blood cells. Mutagenesis analysis also indicated that Cys-151 and Cys-236, at least alone, are not involved in pCMBS inhibition. Altogether, these antigenic, topologic, and functional properties might have implications into the physiology of hUT-B1 and other members of the urea transporter family.  相似文献   
980.
We have identified ribose 2'-hydroxyl groups (2'-OHs) that are critical for the activity of a trans-cleaving delta ribozyme derived from the antigenomic strand of the hepatitis delta virus. Initially, an RNA-DNA mixed ribozyme composed of 26 deoxyribo- (specifically the nucleotides forming the P2 stem and the P4 stem-loop) and 31 ribonucleotides (those forming the catalytic center) was engineered. This mixed ribozyme catalyzed the cleavage of a small substrate with kinetic parameters virtually identical to those of the all-RNA ribozyme. The further substitution of deoxyribose for ribose residues permitted us to investigate the contribution of all 2'-OHs to catalysis. Determination of the kinetic parameters for the cleavage reaction of the resulting ribozymes revealed (i) 10 2'-OH groups appear to be important in supporting the formation of several hydrogen bonds within the catalytic core, (ii) none of the important 2'-OHs seem to coordinate a magnesium cation, and (iii) 1 of the tested RNA-DNA mixed polymers appeared to stabilize the ribozyme-substrate transition-state complex, resulting in an improvement over the all-RNA counterpart. The contribution of the 2'-OHs to the catalytic mechanism is discussed, and differences with the crystal structure of a genomic delta self-cleaved product are explained. Clearly, the 2'-OHs are essential components of the network of interactions involved in the formation of the catalytic center of the delta ribozyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号