首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3495篇
  免费   210篇
  2022年   7篇
  2021年   27篇
  2020年   16篇
  2019年   12篇
  2018年   25篇
  2017年   25篇
  2016年   57篇
  2015年   78篇
  2014年   115篇
  2013年   156篇
  2012年   190篇
  2011年   203篇
  2010年   133篇
  2009年   141篇
  2008年   212篇
  2007年   237篇
  2006年   203篇
  2005年   211篇
  2004年   207篇
  2003年   215篇
  2002年   222篇
  2001年   49篇
  2000年   33篇
  1999年   55篇
  1998年   76篇
  1997年   61篇
  1996年   45篇
  1995年   54篇
  1994年   43篇
  1993年   40篇
  1992年   55篇
  1991年   40篇
  1990年   35篇
  1989年   25篇
  1988年   30篇
  1987年   25篇
  1986年   26篇
  1985年   31篇
  1984年   35篇
  1983年   26篇
  1982年   31篇
  1981年   23篇
  1980年   25篇
  1979年   18篇
  1978年   19篇
  1977年   20篇
  1976年   21篇
  1975年   17篇
  1974年   10篇
  1973年   16篇
排序方式: 共有3705条查询结果,搜索用时 15 毫秒
951.
952.
Heart failure is becoming a major issue for public health in western countries and the effect of currently available therapies is limited. Therefore cell transplantation was developed as an alternative strategy to improve cardiac structure and function. This review describes the multiple cell types and clinical trials considered for use in this indication. Most studies have been developed in models of post-ischemic heart failure. The transplantation of fetal or neonatal cardiomyocytes has proven to be functionally successful, but ethical as well as immunological and technical reasons make their clinical use limited. Recent reports, however, suggested that adult autologous cardiomyocytes could be prepared from stem cells present in various tissues (bone marrow, vessels, adult heart itself, adipose tissue). Alternatively, endothelial progenitors originating from bone marrow or peripheral blood could promote the neoangiogenesis within the scar tissue. Hematopietic stem cells prepared from bone marrow or peripheral blood have been proposed but their differentiation ability seems limited. Finally, the transplantation of skeletal muscle cells (myoblasts) in the infarcted area improved myocardial function, in correlation with the development of skeletal muscle tissue in various animal models. The latter results paved the way for the development of a first phase I clinical trial of myoblast transplantation in patients with severe post-ischemic heart failure. It required the scale-up of human cell production according to good manufacturing procedures, started in june 2000 in Paris and was terminated in november 2001, and was followed by several others. The results were encouraging and prompted the onset of a blinded, multicentric phase II clinical trial for skeletal muscle cells transplantation. Meanwhile, phase I clinical trials also evaluate the safeness and efficacy of various cell types originating from the bone marrow or the peripheral blood. However, potential side effects related to the biological properties of the cells or the delivery procedures are being reported. High quality clinical trials supported by strong pre-clinical data will help to evaluate the role of cell therapy as a potential treatment for heart failure.  相似文献   
953.
Norepinephrine (NE), a standard of care, AVP, an alternative candidate, and L-canavanine (LC), a selective inhibitor of inducible nitric oxide synthase, were compared for efficacy and innocuousness on global and regional hemodynamics, plasmatic and tissue lactate-to-pyruvate ratio (L/P), tissue high-energy phosphates, renal function, and tissue capillary permeability in a rat model of endotoxic normokinetic shock. Mean arterial pressure (MAP) decreased ( approximately 35%) but aortic blood flow increased during endotoxin infusion (P < 0.05 vs. control). Additionally, there was a decrease in mesenteric (MBF) and renal (RBF) blood flows along with regional-to-systemic ratio (P < 0.05 vs. control). All tested drugs restored MAP to basal levels but slightly decreased abdominal aortic flow; however, RBF and MBF remained unchanged. Endotoxin significantly decreased diuresis and inulin clearance ( approximately 3- to 4-fold), whereas AVP or LC attenuated this drop (P < 0.05 vs. control). In contrast, NE did not improve endotoxin-induced renal dysfunction. Endotoxin induced gut and lung hyperpermeability (P < 0.05 vs. control). Endotoxin-induced gut hyperpermeability was inhibited by AVP, LC, and NE. Endotoxin-induced lung hyperpermeability was further worsened by NE ( approximately 2-fold increase) but not AVP infusion (P < 0.05 vs. endotoxin). LC significantly improved endotoxin-induced pulmonary hyperpermeability. Endotoxin increased renal lactate and decreased renal ATP. NE did not change renal lactate or renal ATP. AVP and LC decreased renal lactate and normalized renal ATP. Finally, endotoxin was associated with increased lactate levels and L/P ( approximately 2- and 1.5-fold increases vs. control, respectively), whereas AVP and LC, but not NE, normalized both parameters after endotoxin challenge. These results suggest that, in a short-term endotoxic shock model, AVP improves systemic hemodynamics without side effects and has particular beneficial effects on renal function.  相似文献   
954.
Ferritin has been shown as being the principal iron storage in the majority of living organisms. In marine species, ferritin is also involved in high-level accumulation of (210)Po. As part of our work on the investigation of these radionuclides' concentration in natural environment, ferritin was searched at the gene and protein level. Ferritin was purified from the visceral mass of the oyster Crassostrea gigas by ion-exchange chromatography and HPLC. SDS-PAGE revealed one band of 20 kDa. An Expressed Sequence Tag (EST) library was screened and led to the identification of two complementary DNA (cDNA) involved in ferritin subunit expression. The complete coding sequences and the untranslated regions (UTRs) of the two genes were obtained and a 5' Rapid Amplification of cDNA Ends (RACE) was used to obtain the two iron-responsive elements (IREs) with the predicted stem-loop structures usually present in the 5'-UTR of ferritin mRNA. Sequence alignment in amino acid of the two new cDNA showed an identity with Pinctada fucata (85.4-88.3%), Lymnaea stagnalis (79.3-82.2%) and Helix pomatia (79.1-79.1%). The residues responsible for the ferroxidase center, conserved in all vertebrate H-ferritins, are present in the two oyster ferritin subunits. Oyster ferritins do not present the special characteristics of other invertebrate ferritins like insect ferritins but have some functional similarities with the vertebrate H chains ferritin.  相似文献   
955.
In Arabidopsis suspension cells a rapid plasma membrane depolarization is triggered by abscisic acid (ABA). Activation of anion channels was shown to be a component leading to this ABA-induced plasma membrane depolarization. Using experiments employing combined voltage clamping, continuous measurement of extracellular pH, we examined whether plasma membrane H(+)-ATPases could also be involved in the depolarization. We found that ABA causes simultaneously cell depolarization and medium alkalinization, the second effect being abolished when ABA is added in the presence of H+ pump inhibitors. Inhibition of the proton pump by ABA is thus a second component leading to the plasma membrane depolarization. The ABA-induced depolarization is therefore the result of two different processes: activation of anion channels and inhibition of H(+)-ATPases. These two processes are independent because impairing one did not suppress the depolarization. Both processes are however dependent on the [Ca2+]cyt increase induced by ABA since increase in [Ca(2+)](cyt) enhanced anion channels and impaired H(+)-ATPases.  相似文献   
956.
Cereal endosperm is a model system for cell fate determination in plants. In wild-type plants the outermost endosperm cells adopt aleurone cell fate, while all underlying cells display starchy endosperm cell fate. Mutant analysis showed that cell fate is determined by position rather than lineage. To further characterise the precise cell fate of the outermost cells, we performed a differential screen and isolated the novel marker gene Vpp1. It encodes a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase) and is mainly expressed in kernels, leaves and tassels. In kernels, its expression is restricted to the aleurone layer with the maximum of expression shifting from the adaxial to the abaxial side during early stages. Together with three other marker genes Vpp1 was then used to analyse the cell fate of the outermost cells in Dap3, Dap7, cr4 and dek1 mutants, all of which have aberrant aleurone layers. In the Dap3 and Dap7 mutants the Vpp1 and Ltp2 markers but not the A1 and Zein markers were expressed in patches without aleurone indicating that the outermost cells had some but not all features of aleurone cells and did not simply adopt starchy endosperm cell fate. A similar result was obtained in the cr4 mutant, although Ltp2 expression was less generalised. In other Dap7 patches characterised by multiple aleurone-like cell layers the expression of Vpp1 and Ltp2 confirmed the aleurone cell fate of the cells in the additional cell layers. The analysis of dek1 mutants confirmed the starchy endosperm cell fate of the majority but not all outermost cells. Based on these data we propose a model suggesting a stepwise commitment to aleurone cell fate. Sequential steps are marked by the expression of Vpp1, the expression of Ltp2, the acquisition of a regular shape and thick walls and finally pigmentation coupled with A1 expression.  相似文献   
957.
Long-term preservation of muscle mitochondria for consequent functional analysis is an important and still unresolved challenge in the clinical study of metabolic diseases and in the basic research of mitochondrial physiology. We here present a method for cryopreservation of mitochondria in various muscle types including human biopsies. Mitochondrial function was analyzed after freeze-thawing permeabilized muscle fibers using glycerol and dimethyl sulfoxide as cryoprotectant. Using optimal freeze-thawing conditions, high rates of adenosine 5(')-diphosphate-stimulated respiration and high respiratory control were observed, showing intactness of mitochondrial respiratory function after cryopreservation. Measurement of adenosine 5(')-triphosphate (ATP) formation showed normal rates of ATP synthesis and ATP/O ratios. Intactness of the outer mitochondrial membrane and functional coupling between mitochondrial creatine kinase and oxidative phosphorylation were verified by respiratory cytochrome c and creatine tests. Simultaneous confocal imaging of mitochondrial flavoproteins and nicotinamide adenine dinucleotide revealed normal intracellular arrangement and metabolic responses of mitochondria after freeze-thawing. The method therefore permits, after freezing and long-term storage of muscle samples, mitochondrial function to be estimated and energy metabolism to be monitored in situ. This will significantly expand the scope for screening and exchange of human biopsy samples between research centers, thus providing a new basis for functional analysis of mitochondrial defects in various diseases.  相似文献   
958.
Fatty acid synthase (FAS) is a key metabolic enzyme catalyzing the synthesis of long-chain saturated fatty acids. It plays a central role in the production of surfactant in fetal lungs, in the supply of fatty components of milk, and in the conversion and storage of energy in liver and adipose tissue. Remarkably high levels of FAS expression are found in the majority of human epithelial cancers. As the role of FAS in cancer cells remains largely unknown, we have initiated studies to assess the fate of newly synthesized lipids in cancer cells and have estimated the contribution of FAS to the synthesis of specific lipid classes by treating the cells with small interfering RNAs targeting FAS. Here, we show that in cancer cells FAS plays a major role in the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. These are raft-aggregates implicated in key cellular processes including signal transduction, intracellular trafficking, cell polarization, and cell migration. These findings reveal a novel role for FAS, provide important new insights into the otherwise poorly understood mechanisms underlying the control of lipid composition of membrane microdomains, and point to a link between FAS overexpression and dysregulation of membrane composition and functioning in tumor cells.  相似文献   
959.
Oxidation-reduction midpoint potential (E(m)) versus pH profiles were measured for wild-type thioredoxins from Escherichia coli and from the green alga Chlamydomonas reinhardtii and for a number of site-directed mutants of these two thioredoxins. These profiles all exhibit slopes of approximately -59 mV per pH unit, characteristic of the uptake of two protons per reduction of an active-site thioredoxin disulfide, at acidic, neutral, and moderately alkaline pH values. At higher pH values, these profiles exhibit slopes of either -29.5 mV per pH unit, characteristic of the uptake of one proton per disulfide reduced, or are pH-independent, indicating that neither proton uptake nor proton release is associated with reduction of the active-site disulfide. Reduction of the two wild-type thioredoxins is accompanied by the uptake of two protons even at pH values where the more acidic cysteine thiol group of the reduced proteins would be expected to be completely unprotonated. The effect of site-directed mutagenesis of two highly conserved aspartate residues that play important structural and/or catalytic roles in both thioredoxins, and which could in principle play a role in proton transfer, on the pK(a) values of redox-linked acid dissociations (deduced from changes in slope of the E(m) versus pH profiles) has also been determined for both E. coli thioredoxin and C. reinhardtii thioredoxin h.  相似文献   
960.
A globin in the nucleus!   总被引:15,自引:0,他引:15  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号