首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1595篇
  免费   66篇
  2022年   2篇
  2021年   14篇
  2020年   7篇
  2019年   4篇
  2018年   14篇
  2017年   10篇
  2016年   27篇
  2015年   44篇
  2014年   54篇
  2013年   70篇
  2012年   122篇
  2011年   86篇
  2010年   71篇
  2009年   66篇
  2008年   95篇
  2007年   106篇
  2006年   87篇
  2005年   110篇
  2004年   101篇
  2003年   112篇
  2002年   91篇
  2001年   18篇
  2000年   15篇
  1999年   16篇
  1998年   41篇
  1997年   13篇
  1996年   21篇
  1995年   17篇
  1994年   21篇
  1993年   20篇
  1992年   14篇
  1991年   12篇
  1990年   8篇
  1989年   11篇
  1988年   8篇
  1987年   3篇
  1986年   11篇
  1985年   11篇
  1984年   10篇
  1983年   10篇
  1982年   12篇
  1981年   15篇
  1980年   10篇
  1979年   6篇
  1978年   10篇
  1977年   5篇
  1976年   9篇
  1975年   7篇
  1974年   5篇
  1966年   2篇
排序方式: 共有1661条查询结果,搜索用时 15 毫秒
51.
52.
ContextObesity is associated with insulin-resistance (IR), the key feature of type 2 diabetes. Although chronic low-grade inflammation has been identified as a central effector of IR development, it has never been investigated simultaneously at systemic level and locally in skeletal muscle and adipose tissue in obese humans characterized for their insulin sensitivity.ObjectivesWe compared metabolic parameters and inflammation at systemic and tissue levels in normal-weight and obese subjects with different insulin sensitivity to better understand the mechanisms involved in IR development.Methods30 post-menopausal women were classified as normal-weight insulin-sensitive (controls, CT) and obese (grade I) insulin-sensitive (OIS) or insulin-resistant (OIR) according to their body mass index and homeostasis model assessment of IR index. They underwent a hyperinsulinemic-euglycemic clamp, blood sampling, skeletal muscle and subcutaneous adipose tissue biopsies, an activity questionnaire and a self-administrated dietary recall. We analyzed insulin sensitivity, inflammation and IR-related parameters at the systemic level. In tissues, insulin response was assessed by P-Akt/Akt expression and inflammation by macrophage infiltration as well as cytokines and IκBα expression.ResultsSystemic levels of lipids, adipokines, inflammatory cytokines, and lipopolysaccharides were equivalent between OIS and OIR subjects. In subcutaneous adipose tissue, the number of anti-inflammatory macrophages was higher in OIR than in CT and OIS and was associated with higher IL-6 level. Insulin induced Akt phosphorylation to the same extent in CT, OIS and OIR. In skeletal muscle, we could not detect any inflammation even though IκBα expression was lower in OIR compared to CT. However, while P-Akt/Akt level increased following insulin stimulation in CT and OIS, it remained unchanged in OIR.ConclusionOur results show that systemic IR occurs without any change in systemic and tissues inflammation. We identified a muscle defect in insulin response as an early mechanism of IR development in grade I obese post-menopausal women.  相似文献   
53.
Anterior gradient (AG) proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG) was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor) cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family.  相似文献   
54.
Non-invasive intermittent positive pressure ventilation can lead to esophageal insufflations and in turn to gastric distension. The fact that the latter induces transient relaxation of the lower esophageal sphincter implies that it may increase gastroesophageal refluxes. We previously reported that nasal Pressure Support Ventilation (nPSV), contrary to nasal Neurally-Adjusted Ventilatory Assist (nNAVA), triggers active inspiratory laryngeal closure. This suggests that esophageal insufflations are more frequent in nPSV than in nNAVA. The objectives of the present study were to test the hypotheses that: i) gastroesophageal refluxes are increased during nPSV compared to both control condition and nNAVA; ii) esophageal insufflations occur more frequently during nPSV than nNAVA. Polysomnographic recordings and esophageal multichannel intraluminal impedance pHmetry were performed in nine chronically instrumented newborn lambs to study gastroesophageal refluxes, esophageal insufflations, states of alertness, laryngeal closure and respiration. Recordings were repeated without sedation in control condition, nPSV (15/4 cmH2O) and nNAVA (~ 15/4 cmH2O). The number of gastroesophageal refluxes recorded over six hours, expressed as median (interquartile range), decreased during both nPSV (1 (0, 3)) and nNAVA [1 (0, 3)] compared to control condition (5 (3, 10)), (p < 0.05). Meanwhile, the esophageal insufflation index did not differ between nPSV (40 (11, 61) h-1) and nNAVA (10 (9, 56) h-1) (p = 0.8). In conclusion, nPSV and nNAVA similarly inhibit gastroesophageal refluxes in healthy newborn lambs at pressures that do not lead to gastric distension. In addition, the occurrence of esophageal insufflations is not significantly different between nPSV and nNAVA. The strong inhibitory effect of nIPPV on gastroesophageal refluxes appears identical to that reported with nasal continuous positive airway pressure.  相似文献   
55.
Plant Ecology - Community-weighted mean (CWM) and functional diversity (FD) describe the two aspects of plant communities’ functional structure. While they have been often used separately to...  相似文献   
56.
NOD2 plays an important role in the innate immunity of the intestinal tract. By sensing the muramyl dipeptide (MDP), a bacterial wall component, NOD2 triggers the NF-kappaB signaling pathway and promotes the release of proinflammatory cytokines such as interleukin-8. Mutations in Nod2 (1007FS, R702W, G908R) impinge on NOD2 functions and are associated with the pathogenesis of Crohn disease, a chronic inflammatory bowel disease. Although NOD2 is usually described as a cytosolic receptor for MDP, the protein is also localized at the plasma membrane, and the 1007FS mutation delocalizes NOD2 to the cytoplasm (Barnich, N., Aguirre, J. E., Reinecker, H. C., Xavier, R., and Podolsky, D. K. (2005) J. Cell Biol. 170, 21-26; McDonald, C., Chen, F. F., Ollendorff, V., Ogura, Y., Marchetto, S., Lecine, P., Borg, J. P., and Nunez, G. (2005) J. Biol. Chem. 280, 40301-40309). In this study, we demonstrate that membrane-bound versions of NOD2 and Crohn disease-associated mutants R702W and G908R are capable of responding to MDP and activating the NF-kappaB pathway from this location. In contrast, the 1007FS mutant remains unable to respond to MDP from the plasma membrane. We also show that NOD2 promotes the membrane recruitment of RICK, a serine-threonine kinase involved in NF-kappaB activation downstream of NOD2. Furthermore, the artificial attachment of RICK at the plasma membrane provokes a constitutive and strong activation of the NF-kappaB pathway and secretion of interleukin-8 showing that optimal RICK activity depends upon its subcellular localization. Finally, we show that endogenous RICK localizes at the plasma membrane in the THP1 cell line. Thus, our data suggest that NOD2 is responsible for the membrane recruitment of RICK to induce a regulated NF-kappaB signaling and production of proinflammatory cytokines.  相似文献   
57.
58.

Background

Despite a typically good response to first-line combination chemotherapy, the prognosis for patients with advanced ovarian cancer remains poor because of acquired chemoresistance. The use of targeted therapies such as trastuzumab may potentially improve outcomes for patients with ovarian cancer. HER2 overexpression/amplification has been reported in ovarian cancer, but the exact percentage of HER2-positive tumors varies widely in the literature. In this study, HER2 gene status was evaluated in a large, multicentric series of 320 patients with advanced ovarian cancer, including 243 patients enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin-based chemotherapy.

Methodology/Principal Findings

The HER2 status of primary tumors and metastases was evaluated by both immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) analysis of paraffin-embedded tissue on conventional slides. The prognostic impact of HER2 expression was analyzed. HER2 gene was overexpressed and amplified in 6.6% of analyzed tumors. Despite frequent intratumoral heterogeneity, no statistically significant difference was detected between primary tumors and corresponding metastases.

Conclusions/Significance

Our results show that the decision algorithm usually used in breast cancer (IHC as a screening test, with equivocal results confirmed by FISH) is appropriate in ovarian cancer. In contrast to previous series, HER2-positive status did not influence outcome in the present study, possibly due to the fact that patients in our study received paclitaxel/carboplatin-based chemotherapy. This raises the question of whether HER2 status and paclitaxel sensitively are linked.  相似文献   
59.
Despite increasing evidence of behavioural manipulation of their vectors by pathogens, the underlying mechanisms causing infected vectors to act in ways that benefit pathogen transmission remain enigmatic in most cases. Here, 2-D DIGE coupled with MS were employed to analyse and compare the head proteome of mosquitoes (Anopheles gambiae sensu stricto (Giles)) infected with the malarial parasite (Plasmodium berghei) with that of uninfected mosquitoes. This approach detected altered levels of 12 protein spots in the head of mosquitoes infected with sporozoites. These proteins were subsequently identified using MS and functionally classified as belonging to metabolic, synaptic, molecular chaperone, signalling, and cytoskeletal groups. Our results indicate an altered energy metabolism in the head of sporozoite-infected mosquitoes. Some of the up-/down-regulated proteins identified, such as synapse-associated protein, 14-3-3 protein and calmodulin, have previously been shown to play critical roles in the CNS of both invertebrates and vertebrates. Furthermore, a heat shock response (HSP 20) and a variation of cytoarchitecture (tropomyosins) have been shown. Discovery of these proteins sheds light on potential molecular mechanisms that underlie behavioural modifications and offers new insights into the study of intimate interactions between Plasmodium and its Anopheles vector.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号