首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1821篇
  免费   115篇
  国内免费   2篇
  2022年   6篇
  2021年   22篇
  2020年   10篇
  2019年   11篇
  2018年   18篇
  2017年   12篇
  2016年   22篇
  2015年   57篇
  2014年   80篇
  2013年   97篇
  2012年   138篇
  2011年   131篇
  2010年   77篇
  2009年   71篇
  2008年   123篇
  2007年   116篇
  2006年   119篇
  2005年   113篇
  2004年   120篇
  2003年   98篇
  2002年   84篇
  2001年   19篇
  2000年   18篇
  1999年   26篇
  1998年   33篇
  1997年   34篇
  1996年   22篇
  1995年   14篇
  1994年   21篇
  1993年   14篇
  1992年   23篇
  1991年   9篇
  1990年   9篇
  1989年   11篇
  1988年   9篇
  1987年   13篇
  1985年   9篇
  1984年   10篇
  1983年   5篇
  1982年   10篇
  1981年   6篇
  1980年   5篇
  1979年   11篇
  1978年   10篇
  1977年   7篇
  1976年   8篇
  1973年   13篇
  1972年   7篇
  1971年   5篇
  1968年   5篇
排序方式: 共有1938条查询结果,搜索用时 781 毫秒
81.
82.
83.
NMR spectroscopy has evolved dramatically over the past 15 years, establishing a new, reliable methodology for studying biomacromolecules at atomic resolution. The three-dimensional structure and dynamics of a biomolecule or a biomolecular complex is only one of the main types of information available using NMR. The spectral assignment to the specific nuclei of a biostructure is a very precise reflection of their electronic environment. Any change in this environment due to a structural change, the binding of a ligand or the redox state of a redox cofactor, will be very sensitively reported by changes in the different NMR parameters. The capabilities of the NMR method are currently expanding dramatically and it is turning into a powerful means to study biosystems dynamically in exchange between different conformations, exchanging ligands, transient complexes, or the activation/inhibition of regulated enzymes. We review here several NMR studies that have appeared during the past 5 or 6 years in the field of redox proteins of plants, yeasts and photosynthetic bacteria. These new results illustrate the recent biomolecular NMR evolution and provide new physiological models for understanding the different types of electron transfer, including glutaredoxins, thioredoxins and their dependent enzymes, the ferredoxin-NADP oxidoreductase complex, flavodoxins, the plastocyanin-cytochrome f complex, and cytochromes c.  相似文献   
84.
We investigated in rat the effects of ozone exposure (0.7 ppm) for 5 h on the catecholamine biosynthesis and turnover in sympathetic efferents and various brain areas. For this purpose, the activity of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, was assessed in superior cervical ganglia and in two major noradrenergic cell groups, A2 and A6 (locus coeruleus). Tyrosine hydroxylase activity was estimated in vivo by measuring the accumulation of l-dihydroxyphenylalanine after pharmacological blockade of L-aromatic acid decarboxylases by NSD-1015 (100 mg/kg i.p.). The catecholamine turnover rate was measured after inhibition of tyrosine hydroxylase by alpha-methyl-para-tyrosine (AMPT, 250 mg/kg, i.p., 2.5 h) in peripheral sympathetic target organ (heart and lungs) as well as in some brain catecholamine terminal areas (cerebral cortex, hypothalamus and striatum). Ozone caused differential effects according to the structure. Catecholamine biosynthesis was stimulated in superior cervical ganglia (+44%, P < 0.05) and caudal A2 subset (+126%, P < 0.01), whereas catecholamine turnover was increased in heart (+183%, P < 0.01) and cortex (+22%, P < 0.05). On the other hand, catecholamine turnover was inhibited in lungs (-53%, P < 0.05) and striatum (-24%, P < 0.05). A brief exposure to ozone, at a concentration chosen to mimic pollution level encountered in urban areas, can modulate catecholamine biosynthesis and utilization rate in the sympathetic and central neurones.  相似文献   
85.
86.
We present the pollen analysis of a new sedimentary sequence taken at La Pouretère ( 1720 m), in the mountain vegetation zone of the Marcadau valley (central Pyrenees). The Lateglacial and Holocene chronology is supported by six 14C-dating results. The complementary analysis of some vegetal macroremains, stomata, pollen-clusters and the use of pollen influx allows us to elucidate the dynamic of mountain species such as Pinus and specially Abies but also to infer the unusual part played by Betula at the beginning of the Postglacial period.  相似文献   
87.

Background

Dendritic cell (DC) transmission of human immunodeficiency virus (HIV) to CD4+ T cells occurs across a point of cell-cell contact referred to as the infectious synapse. The relationship between the infectious synapse and the classically defined immunological synapse is not currently understood. We have recently demonstrated that human B cells expressing exogenous DC-SIGN, DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin, efficiently transmit captured HIV type 1 (HIV-1) to CD4+ T cells. K562, another human cell line of hematopoietic origin that has been extensively used in functional analyses of DC-SIGN and related molecules, lacks the principal molecules involved in the formation of immunological synaptic junctions, namely major histocompatibility complex (MHC) class II molecules and leukocyte function-associated antigen-1 (LFA-1). We thus examined whether K562 erythroleukemic cells could recapitulate efficient DC-SIGN-mediated HIV-1 transmission (DMHT).

Results

Here we demonstrate that DMHT requires cell-cell contact. Despite similar expression of functional DC-SIGN, K562/DC-SIGN cells were inefficient in the transmission of HIV-1 to CD4+ T cells when compared with Raji/DC-SIGN cells. Expression of MHC class II molecules or LFA-1 on K562/DC-SIGN cells was insufficient to rescue HIV-1 transmission efficiency. Strikingly, we observed that co-culture of K562 cells with Raji/DC-SIGN cells impaired DMHT to CD4+ T cells. The K562 cell inhibition of transmission was not directly exerted on the CD4+ T cell targets and required contact between K562 and Raji/DC-SIGN cells.

Conclusions

DMHT is cell type dependent and requires cell-cell contact. We also find that the cellular milieu can negatively regulate DC-SIGN transmission of HIV-1 in trans.  相似文献   
88.
Regulation of gene expression by alpha-tocopherol   总被引:5,自引:0,他引:5  
  相似文献   
89.
Ten microsatellite loci were used to investigate the impact of human activity on the spatial and temporal genetic structure of Vitellaria paradoxa (Sapotaceae), a parkland tree species in agroforestry systems in southern Mali. Two stands (forest and fallow) and three cohorts (adults, juveniles and natural regeneration) in each stand were studied to: (i) compare their levels of genetic diversity (gene diversity, HE; allelic richness, Rs; and inbreeding, FIS); (ii) assess their genetic differentiation (FST); and (iii) compare their levels of spatial genetic structuring. Gene diversity parameters did not vary substantially among stands or cohorts, and tests for bottleneck events were nonsignificant. The inbreeding coefficients were not significantly different from zero in most cases (FIS = -0.025 in forest and 0.045 in fallow), suggesting that the species is probably outbreeding. There was a weak decrease in F(IS) with age, suggesting inbreeding depression. Differentiation of stands within each cohort was weak (FST = 0.026, 0.0005, 0.010 for adults, juveniles and regeneration, respectively), suggesting extensive gene flow. Cohorts within each stand were little differentiated (FST = -0.001 and 0.001 in forest and fallow, respectively). The spatial genetic structure was more pronounced in fallow than in forest where adults showed no spatial structuring. In conclusion, despite the huge influence of human activity on the life cycle of Vitellaria paradoxa growing in parkland systems, the impact on the pattern of genetic variation at microsatellite loci appears rather limited, possibly due to the buffering effect of extensive gene flow between unmanaged and managed populations.  相似文献   
90.
Pulmonary arteries (PA) are resistant to the vasodilator effects of extracellular acidosis in systemic vessels; the mechanism underlying this difference between systemic and pulmonary circulations has not been elucidated. We hypothesized that RhoA/Rho-kinase-mediated Ca2+ sensitization pathway played a greater role in tension development in pulmonary than in systemic vascular smooth muscle and that this pathway was insensitive to acidosis. In arterial rings contracted with the alpha1-agonist phenylephrine (PE), the Rho-kinase inhibitor Y-27632 (< or =3 microM) induced greater relaxation in precontracted PA rings than in aortic rings. In PA rings stimulated by PE, the activation of RhoA was greater than in aorta. Normocapnic acidosis (NA) induced a smaller relaxation in precontracted PA than in aorta. However, in the presence of nifedipine and thapsigargin, when PE-induced contraction was predominantly mediated by Rho-kinase, the relaxant effect of NA was reduced and similar in both vessel types. Furthermore, in the presence of Y-27632, NA induced a greater relaxation in both PA and aorta, which was similar in both vessels. Finally, in alpha-toxin-permeabilized smooth muscle, PE-induced contraction at constant Ca2+ activity was inhibited by Y-27632 and unaffected by acidosis. These results indicate that Ca2+ sensitization induced by the RhoA/Rho-kinase pathway played a greater role in agonist-induced vascular smooth muscle contraction in PA than in aorta and that tension mediated by this pathway was insensitive to acidosis. The predominant role of the RhoA/Rho-kinase pathway in the pulmonary vasculature may account for the resistance of this circulation to the vasodilator effect of acidosis observed in the systemic circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号