首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1516篇
  免费   76篇
  国内免费   2篇
  2023年   2篇
  2021年   19篇
  2020年   5篇
  2019年   6篇
  2018年   16篇
  2017年   11篇
  2016年   23篇
  2015年   59篇
  2014年   68篇
  2013年   84篇
  2012年   90篇
  2011年   118篇
  2010年   70篇
  2009年   70篇
  2008年   105篇
  2007年   111篇
  2006年   106篇
  2005年   101篇
  2004年   96篇
  2003年   83篇
  2002年   96篇
  2001年   18篇
  2000年   17篇
  1999年   21篇
  1998年   30篇
  1997年   22篇
  1996年   18篇
  1995年   22篇
  1994年   9篇
  1993年   12篇
  1992年   10篇
  1991年   10篇
  1990年   4篇
  1989年   10篇
  1988年   9篇
  1987年   4篇
  1986年   1篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有1594条查询结果,搜索用时 31 毫秒
31.
BackgroundThe aetiology of the metabolic syndrome and the inter-relationship between risk factors for this syndrome are poorly understood. The purpose of this investigation was to determine the risk factors for metabolic syndrome and their interactions in a cohort of women with a high prevalence of metabolic syndrome.ResultsMetabolic syndrome was present in 49.6% of the study cohort. Logistic regression analysis demonstrated that adiponectin (odds ratio [95% CIs]: 0.84 [0.77, 0.92], p<0.0005) and abdominal subcutaneous fat (0.56 [0.39, 0.79], p = 0.001) reduced metabolic syndrome risk whilst insulin resistance (1.31 [1.16, 1.48], p<0.0005) and trunk fat-free soft-tissue mass (1.34 [1.10, 1.61], p = 0.002) increased risk. Within this group of risk factors, the relationship of adiponectin with metabolic syndrome risk, when analysed across adiponectin hexiles, was the least affected by adjustment for the other risk factors.ConclusionsAdiponectin has a significant protective role against metabolic syndrome and is independent of other risk factors. The protective and possible augmentive effects of abdominal subcutaneous fat and lean trunk mass, respectively on metabolic syndrome risk demonstrate the existence of novel interactions between body composition and cardiometabolic disease.  相似文献   
32.
The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) ‘Bright Yellow 2’ cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.Eukaryotic plasma membranes (PMs) are composed of three main classes of lipids, glycerolipids, sphingolipids, and sterols, which may account for up to 100,000 different molecular species (Yetukuri et al., 2008; Shevchenko and Simons, 2010). Overall, all glycerolipids share the same molecular moieties in plants, animals, and fungi. By contrast, sterols and sphingolipids are different and specific to each kingdom. For instance, the plant PM contains an important number of sterols, among which β-sitosterol, stigmasterol, and campesterol predominate (Furt et al., 2011). In addition to free sterols, phytosterols can be conjugated to form steryl glycosides (SG) and acyl steryl glycosides (ASG) that represent up to approximately 15% of the tobacco (Nicotiana tabacum) PM (Furt et al., 2010). As for sphingolipids, sphingomyelin, the major phosphosphingolipid in animals, which harbors a phosphocholine as a polar head, is not detected in plants. Glycosyl inositol phosphorylceramides (GIPCs) are the major class of sphingolipids in plants, but they are absent in animals (Sperling and Heinz, 2003; Pata et al., 2010). Sphingolipidomic approaches identified up to 200 plant sphingolipids (for review, see Pata et al., 2010; Cacas et al., 2013).Although GIPCs belong to one of the earliest classes of plant sphingolipids that were identified in the late 1950s (Carter et al., 1958), only a few GIPCs have been structurally characterized to date because of their high polarity and a limited solubility in typical lipid extraction solvents. For these reasons, they were systematically omitted from published plant PM lipid composition. GIPCs are formed by the addition of an inositol phosphate to the ceramide moiety, the inositol headgroup of which can then undergo several glycosylation steps. The dominant glycan structure, composed of a hexose-GlcA linked to the inositol, is called series A. Polar heads containing three to seven sugars, so-called series B to F, have been identified and appeared to be species specific (Buré et al., 2011; Cacas et al., 2013; Mortimer et al., 2013). The ceramide moiety of GIPCs consists of a long-chain base (LCB), mainly t18:0 (called phytosphingosine) or t18:1 compounds (for review, see Pata et al., 2010), to which is amidified a very-long-chain fatty acid (VLCFA), the latter of which is mostly 2-hydroxylated (hVLCFA) with an odd or even number of carbon atoms. In plants, little is known about the subcellular localization of GIPCs. It is assumed, however, that they would be highly represented in the PM (Worrall et al., 2003; Sperling et al., 2005), even if this remains to be experimentally proven. The main argument supporting such an assumption is the strong enrichment of trihydroxylated LCB (t18:n) in detergent-insoluble membrane (DIM) fractions (Borner et al., 2005; Lefebvre et al., 2007), LCB being known to be predominant in GIPC’s core structure as aforementioned.In addition to this chemical complexity, lipids are not evenly distributed within the PM. Sphingolipids and sterols can preferentially interact with each other and segregate to form microdomains dubbed the membrane raft (Simons and Toomre, 2000). The membrane raft hypothesis suggests that lipids play a regulatory role in mediating protein clustering within the bilayer by undergoing phase separation into liquid-disordered and liquid-ordered phases. The liquid-ordered phase, termed the membrane raft, was described as enriched in sterol and saturated sphingolipids and is characterized by tight lipid packing. Proteins, which have differential affinities for each phase, may become enriched in, or excluded from, the liquid-ordered phase domains to optimize the rate of protein-protein interactions and maximize signaling processes. In animals, rafts have been implicated in a huge range of cellular processes, such as hormone signaling, membrane trafficking in polarized epithelial cells, T cell activation, cell migration, and the life cycle of influenza and human immunodeficiency viruses (Simons and Ikonen, 1997; Simons and Gerl, 2010). In plants, evidence is increasing that rafts are also involved in signal transduction processes and membrane trafficking (for review, see Mongrand et al., 2010; Simon-Plas et al., 2011; Cacas et al., 2012a).Moreover, lipids are not evenly distributed between the two leaflets of the PM. Within the PM of eukaryotic cells, sphingolipids are primarily located in the outer monolayer, whereas unsaturated phospholipids are predominantly exposed on the cytosolic leaflet. This asymmetrical distribution has been well established in human red blood cells, in which the outer leaflet contains sphingomyelin, phosphatidylcholine, and a variety of glycolipids like gangliosides. By contrast, the cytoplasmic leaflet is composed mostly of phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and their phosphorylated derivatives (Devaux and Morris, 2004). With regard to sphingolipids and glycerolipids, the asymmetry of the former is established during their biosynthesis and that of the latter requires ATPases such as the aminophospholipid translocase that transports lipids from the outer to the inner leaflet as well as multiple drug resistance proteins that transport phosphatidylcholine in the opposite direction (Devaux and Morris, 2004). This ubiquitous scheme encountered in animal cells could apply in plant cells as proposed (Tjellstrom et al., 2010). Indeed, the authors showed that there is a pronounced transverse lipid asymmetry in root at the PM. Phospholipids and galactolipids dominate the cytosolic leaflet, whereas the apoplastic leaflet is enriched in sphingolipids and sterols.From such a high diversity of the plant PM thus arises the question of the respective contribution of lipids to membrane suborganization. Our group recently tackled this aspect by characterizing the order level of liposomes prepared from various plant lipids and labeled with the environment-sensitive probe di-4-ANEPPDHQ (Grosjean et al., 2015). Fluorescence spectroscopy experiments showed that, among phytosterols, campesterol exhibits the strongest ability to order model membranes. In agreement with these data, spatial analysis of the membrane organization through multispectral confocal microscopy pointed to the strong ability of campesterol to promote liquid-ordered domain formation and organize their spatial distribution at the membrane surface. Conjugated sterols also exhibit a striking ability to order membranes. In addition, GIPCs enhance the sterol-induced ordering effect by emphasizing the formation and increasing the size of sterol-dependent ordered domains.The aim of this study was to reinvestigate the lipid composition and organization of the PM with a particular focus on GIPCs using tobacco leaves and cv Bright Yellow 2 (BY-2) cell cultures as models. Analyzing all membrane lipid classes at once, including sphingolipids, is challenging because they all display dramatically different chemical polarity, from very apolar (like free sterols) to highly polar (like polyglycosylated GIPCs) molecules. Most lipid extraction techniques published thus far use a chloroform/methanol mixture and phase partition to remove contaminants, resulting in the loss GIPCs, which remain in the aqueous phase, unextracted in the insoluble pellet, or at the interphase (Markham et al., 2006). In order to gain access to both glycerolipid and sphingolipid species at a glance, we developed a protocol whereby the esterifed or amidified fatty acids were hydrolyzed from the glycerol backbone (glycerolipids) or the LCB (sphingolipids) of membrane lipids, respectively. Fatty acids were then analyzed by gas chromatography-mass spectrometry (GC-MS) with appropriate internal standards for quantification. We further proposed that the use of methyl tert-butyl ether (MTBE) ensures the extraction of all classes of plant polar lipids. Our results indicate that GIPCs represent up to 40 mol % of total tobacco PM lipids. Interestingly, polyglycolyslated GIPCs are 5-fold enriched in DIMs of BY-2 cells when compared with the PM. Further investigation led us to develop a preparative purification procedure that allowed us to obtain enough material to raise antibodies against GIPCs. Using immunogold labeling on PM vesicles, it was found that polyglycosylated GIPCs cluster in membrane nanodomains, strengthening the idea that lateral nanosegregation of sphingolipids takes place at the PM in plants. Multispectral confocal microscopy was performed on vesicles prepared using GIPCs, phospholipids, and sterols and labeled with the environment-sensitive probe di-4-ANEPPDHQ. Our results show that, despite different fatty acid and polar head compositions, GIPCs extracted from tobacco leaves and BY-2 cells have a similar intrinsic propensity of enhancing vesicle global order together with sterols. Assuming that GIPCs are mostly present in the outer leaflet of the PM, interactions between sterols and sphingolipids were finally studied by the Langmuir monolayer technique, and the area of a single molecule of GIPC, or in interaction with phytosterols, was calculated. Using the calculation docking method, the energy of interaction between GIPCs and phytosterols was determined. A model was proposed in which GIPCs and phytosterols interact together to form liquid-ordered domains and in which the VLCFAs of GIPCs promote the interdigitation of the two membrane leaflets. The implications of domain formation and the asymmetrical distribution of lipids at the PM in plants are also discussed. Finally, we propose a model that reconsiders the intricate organization of the plant PM bilayer.  相似文献   
33.
34.
The cytokine Sp?tzle is the ligand for Drosophila Toll, the prototype of an important family of membrane receptors that function in embryonic patterning and innate immunity. A dimeric precursor of Sp?tzle is processed by an endoprotease to produce a form (C-106) that cross-links Toll receptor ectodomains and establishes signaling. Here we show that before processing the pro-domain of Sp?tzle is required for correct biosynthesis and secretion. We mapped two loss-of-function mutations of Sp?tzle to a discrete site in the pro-domain and showed that the phenotype arises because of a defect in biosynthesis rather than signaling. We also report that the pro-domain and C-106 remain associated after cleavage and that this processed complex signals with the same characteristics as the C-terminal fragment. These results suggest that before activation the determinants on C-106 that bind specifically to Toll are sequestered by the pro-domain and that proteolytic processing causes conformational rearrangements that expose these determinants and enables binding to Toll. Furthermore, we show that the pro-domain is released when the Toll extracellular domain binds to the complex, a finding that has implications for the generation of a signaling-competent Toll dimer.  相似文献   
35.
Prothrombin is proteolytically activated by the prothrombinase complex comprising the serine protease Factor (F) Xa complexed with its cofactor, FVa. Based on inhibition of the prothrombinase complex by synthetic peptides, FVa residues 493-506 were proposed as a FXa binding site. FVa is homologous to FVIIIa, the cofactor for the FIXa protease, in the FX-activating complex, and FVIIIa residues 555-561 (homologous to FVa residues 499-506) are recognized as a FIXa binding sequence. To test the hypothesis that FVa residues 499-505 contribute to FXa binding, we created the FVa loop swap mutant (designated 499-505(VIII) FV) with residues 499-505 replaced by residues 555-561 of FVIIIa, which differ at five of seven positions. Based on kinetic measurements and spectroscopic titrations, this FVa loop swap mutant had significantly reduced affinity for FXa. The fully formed prothrombinase complex containing this FVa mutant had fairly normal kinetic parameters (k(cat) and K(m)) for cleavage of prothrombin at Arg-320. However, small changes in both Arg-320 and Arg-271 cleavage rates result together in a moderate change in the pathway of prothrombin activation. Although residues 499-505 directly precede the Arg-506 cleavage site for activated protein C (APC), the 499-505(VIII) FVa mutant was inactivated entirely normally by APC. These results suggest that this A2 domain sequence of the FVa and FVIIIa cofactors evolved to have different specificity for binding FXa and FIXa while retaining compatibility as substrate for APC. In an updated three-dimensional model for the FVa structure, residues 499-505, along with Arg-506, Arg-306, and other previously suggested FXa binding sequences, delineate a continuous surface on the A2 domain that is strongly implicated as an extended FXa binding surface in the prothrombinase complex.  相似文献   
36.
All replication-competent retroviruses contain three main reading frames, gag, pol and env, which are used for the synthesis of structural proteins, enzymes and envelope proteins respectively. Complex retroviruses, such as lentiviruses, also code for regulatory and accessory proteins that have essential roles in viral replication. The concerted expression of these genes ensures the efficient polypeptide production required for the assembly and release of new infectious progeny virions. Retroviral protein synthesis takes place in the cytoplasm and depends exclusively on the translational machinery of the host infected cell. Therefore, not surprisingly, retroviruses have developed RNA structures and strategies to promote robust and efficient expression of viral proteins in a competitive cellular environment.  相似文献   
37.
Nine yeast strains were isolated from spontaneous fermentations in the Alsace area of France, during the 1997, 1998 and 1999 grape harvests. Strains were characterized by pulsed-field gel electrophoresis, PCR-restriction fragment length polymorphism (RFLP) of the MET2 gene, delta-PCR, and microsatellite patterns. Karyotypes and MET2 fragments of the nine strains corresponded to mixed chromosomal bands and restriction patterns for both Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum. They also responded positively to amplification with microsatellite primers specific to both species and were demonstrated to be diploid. However, meiosis led to absolute nonviability of their spores on complete medium. All the results demonstrated that the nine yeast strains isolated were S. cerevisiaexS. bayanus var. uvarum diploid hybrids. Moreover, microsatellite DNA analysis identified strains isolated in the same cellar as potential parents belonging to S. bayanus var. uvarum and S. cerevisiae.  相似文献   
38.
G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors and are of major therapeutic importance. The identification of GPCR-associated proteins is an important step toward a better understanding of these receptors. However, current methods are not satisfying as only isolated receptor domains (intracellular loops or carboxyl-terminal tails) can be used as "bait." We report here a method based on tandem affinity purification coupled to mass spectrometry that overcomes these limitations as the entire receptor is used to identify protein complexes formed in living mammalian cells. The human MT(1) and MT(2) melatonin receptors were chosen as model GPCRs. Both receptors were tagged with the tandem affinity purification tag at their carboxyl-terminal tails and expressed in human embryonic kidney 293 cells. Receptor solubilization and purification conditions were optimized. The method was validated by the co-purification of G(i) proteins, which are well known GPCR interaction partners but which are difficult to identify with current protein-protein interaction assays. Several new and functionally relevant MT(1)- and MT(2)-associated proteins were identified; some of them were common to both receptors, and others were specific for each subtype. Taken together, our protocol allowed for the first time the purification of GPCR-associated proteins under native conditions in quantities suitable for mass spectrometry analysis.  相似文献   
39.
Systemic hypoxia causes cutaneous vasodilation in healthy humans.   总被引:1,自引:0,他引:1  
Hypoxia and hypercapnia represent special challenges to homeostasis because of their effects on sympathetic outflow and vascular smooth muscle. In the cutaneous vasculature, even small changes in perfusion can shift considerable blood volume to the periphery and thereby impact both blood pressure regulation and thermoregulation. However, little is known about the influence of hypoxia and hypercapnia on this circulation. In the present study, 35 healthy subjects were instrumented with two microdialysis fibers in the ventral forearm. Each site was continuously perfused with saline (control) or bretylium tosylate (10 mM) to prevent sympathetically mediated vasoconstriction. Skin blood flow was assessed at each site (laser-Doppler flowmetry), and cutaneous vascular conductance (CVC) was calculated as red blood cell flux/mean arterial pressure and normalized to baseline. In 13 subjects, isocapnic hypoxia (85 and 80% O(2) saturation) increased CVC to 120 +/- 10 and 126 +/- 7% baseline in the control site (both P < 0.05) and 113 +/- 3 (P = 0.087) and 121 +/- 4% baseline (P < 0.05) in the bretylium site. Adrenergic blockade did not affect the magnitude of this response (P > 0.05). In nine subjects, hyperpnea (matching hypoxic increases in tidal volume) caused no change in CVC in either site (both P > 0.05). In 13 subjects, hypercapnia (+5 and +9 Torr) increased CVC to 111 +/- 4 and 111 +/- 4% baseline, respectively, in the control site (both P < 0.05), whereas the bretylium site remained unchanged (both P > 0.05). Thus both hypoxia and hypercapnia cause modest vasodilation in nonacral skin. Adrenergic vasoconstriction of neural origin does not restrain hypoxic vasodilation, but may be important in hypercapnic vasodilation.  相似文献   
40.
Membrane protein (MP) complexes play key roles in all living cells. Their structural characterisation is hampered by difficulties in purifying and crystallising them. Recent progress in electron microscopy (EM) have revolutionised the field, not only by providing higher-resolution structures for previously characterised MPs but also by yielding first glimpses into the structure of larger and more challenging complexes, such as bacterial secretion systems. However, the resolution of pioneering EM structures may be difficult and their interpretation requires clues regarding the overall organisation of the complexes. In this context, we present BAmSA, a new method for localising transmembrane (TM) regions in MP complexes, using a general procedure that allows tagging them without resorting to neither genetic nor chemical modification. Labels bound to TM regions can be visualised directly on raw negative-stain EM images, on class averages, or on three-dimensional reconstructions, providing a novel strategy to explore the organisation of MP complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号