首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   934篇
  免费   51篇
  2022年   3篇
  2021年   10篇
  2020年   2篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   21篇
  2015年   19篇
  2014年   29篇
  2013年   73篇
  2012年   77篇
  2011年   53篇
  2010年   38篇
  2009年   42篇
  2008年   55篇
  2007年   55篇
  2006年   57篇
  2005年   61篇
  2004年   45篇
  2003年   50篇
  2002年   60篇
  2001年   12篇
  2000年   7篇
  1999年   10篇
  1998年   9篇
  1997年   12篇
  1996年   17篇
  1995年   14篇
  1994年   11篇
  1993年   6篇
  1992年   13篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   11篇
  1984年   8篇
  1983年   3篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   7篇
  1976年   5篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
排序方式: 共有985条查询结果,搜索用时 31 毫秒
61.
A key feature of signal processing in the mammalian retina is parallel processing, where the segregation of visual information, e.g., brightness, darkness, and color, starts at the first synapse in the retina, the photoreceptor synapse. These various aspects are transmitted in parallel from the input neurons of the retina, the photoreceptor cells, through the interconnecting bipolar cells, to the output neurons, the ganglion cells. The photoreceptors and bipolar cells release a single excitatory neurotransmitter, glutamate, at their synapses. This parsimony is contrasted by the expression of a plethora of glutamate receptors, receptor subunits, and isoforms. The detailed knowledge of the synaptic distribution of glutamate receptors thus is of major importance in understanding the mechanisms of retinal signal processing. This review intends to highlight recent studies on the distribution of glutamate receptors at the photoreceptor synapses of the mammalian retina.  相似文献   
62.
Size-dependent changes in chlorophyll a and uptake of inorganiccarbon (C) and nitrogen (N) by phytoplankton were measured inthe shallow South Basin of Lake Biwa, before and during a periodof typhoons (high winds). The latter period was characterizedby complete mixing of the water column, a major decline in underwaterirradiance, and a transient increase in dissolved reactive Nand phosphorus (P). Nutrient concentrations, seston N:P ratiosand uptake rates indicate that P and not N limited phytoplanktonover the whole study period. The typhoon-induced increase inphosphorus supply resulted in Blackman-type (increased C- andN-specific growth rates) and Liebig-type (increased biomassyield) responses by the phytoplankton. Picoplankton were dominantin the relatively stable and clear water column prior to thetyphoons, but were rapidly outgrown by larger cells during andafter wind-induced mixing. The slower response of picoplanktonindicates lower maximum intrinsic growth rates and photosyntheticefficiency. These observations are contrary to the view thatpicoplankton have higher light-harvesting abilities and growthrates than larger cells. Typhoon-induced mixing stimulated theshift to fast-growing, dim light-adapted larger cells. The resultsquestion the allometric paradigm of increasing growth ratesand light-capturing efficiency with decreasing cell size, butare consistent with the oceanographic view that large-celledphytoplankton control the major fluctuations in biomass andprimary productivity, while picoplankton account for a comparativelystable background productivity.  相似文献   
63.
Brucella are facultative intracellular Gram-negative coccobacilli that chronically infect humans as well as domestic and wild-type mammals, and cause brucellosis. Alternatively activated macrophages (M2a) induced by IL-4/IL-13 via STAT6 signaling pathways have been frequently described as a favorable niche for long-term persistence of intracellular pathogens. Based on the observation that M2a-like macrophages are induced in the spleen during the chronic phase of B. abortus infection in mice and are strongly infected in vitro, it has been suggested that M2a macrophages could be a potential in vivo niche for Brucella. In order to test this hypothesis, we used a model in which infected cells can be observed directly in situ and where the differentiation of M2a macrophages is favored by the absence of an IL-12-dependent Th1 response. We performed an in situ analysis by fluorescent microscopy of the phenotype of B. melitensis infected spleen cells from intranasally infected IL-12p40-/- BALB/c mice and the impact of STAT6 deficiency on this phenotype. Most of the infected spleen cells contained high levels of lipids and expressed CD11c and CD205 dendritic cell markers and Arginase1, but were negative for the M2a markers Fizz1 or CD301. Furthermore, STAT6 deficiency had no effect on bacterial growth or the reservoir cell phenotype in vivo, leading us to conclude that, in our model, the infected cells were not Th2-induced M2a macrophages. This characterization of B. melitensis reservoir cells could provide a better understanding of Brucella persistence in the host and lead to the design of more efficient therapeutic strategies.  相似文献   
64.
The biodegradation of estradiol (E2), estrone (E1), and ethinylestradiol (EE2) was investigated using mixed bacterial cultures enriched from activated sludge. Enrichments were carried out on E2 or EE2 in batch conditions with acetonitrile as additional carbon source. Degradation experiments were performed both using hormones as sole carbon source or with an additional source. The hormones were completely degraded by these cultures. Estradiol was rapidly converted to E1 within 24 h. Thereafter, E1 degradation began, displaying a lag phase ranging from 3 to 4 days. Estrone depletion took from 48 h to more than 6 days, depending on the culture conditions. For EE2 degradation, when it was the sole carbon source, the lag phase and the time required for its complete removal (7 and 15 days, respectively) were shorter that in cultures with a supplementary carbon source. The specific degradation rates observed for E2 both with and without an additional carbon source were similar. By contrast, the specific degradation rates for E1 and EE2 were, respectively, seven and 20 times faster when these hormones were supplied as the sole carbon source. The bacterial community structure of each culture was characterized by molecular and cultural methods. The mixed cultures were made up of species belonging to Alcaligenes faecalis, Pusillimonas sp., Denitrobacter sp., and Brevundimonas diminuta or related to uncultured Bacteroidetes. The isolated strain B. diminuta achieved the conversion of E2 to E1.  相似文献   
65.
Faced with an ephemeral prey, aphidophagous ladybirds rely on the hydrocarbons present in the tracks of their larvae to choose an unoccupied patch for egg laying. Although both conspecific and heterospecific larval tracks might deter females from oviposition, the response to the later is often less striking. Several explanations have been suggested to account for this. In this paper we tested the phylogeny hypothesis, which predicts that the chemical composition of the tracks of closely related species of ladybirds will be more similar to one another than to those of more distantly related species. Qualitative and quantitative information on the chemical nature of the larval tracks and a molecular phylogeny of seven species belonging to three different genera are provided, and the congruence between these two sets of results assessed. The results confirm the phylogeny hypothesis and infer a gradual mode of evolution of these infochemicals.  相似文献   
66.
It is now widely recognized that gene expression and cellular processes include a probabilistic component. However, this does not essentially modify the theory of genetic programming. This stochastic aspect, which is called noise, is usually conceived as a margin of fluctuation in the way the genetic program functions and the latter remains understood as a specific mechanism guided by genetic information. In contrast, recent data show that proteins do not possess a high level of specificity. They can interact with numerous molecular partners. As a consequence molecular interactions are not simply “noisy”. Because they are subject to large combinatorial interaction possibilities, they are also intrinsically stochastic and must be sorted out by the cell structure. This contradicts the genetic programming theory which is based on the idea that protein interactions are directed by their stereospecificity and genetic information. Taking into account the lack of protein specificity leads to a new theory. Natural selection acts not only in evolution but also in ontogenesis by sorting stochastic molecular interactions. In this frame, the making up of an organism, instead of being a simple bottom-top process in which information flows from genes to phenotypes, is both a bottom-top and top-bottom process. Genes provide proteins, but their stochastic interactions are sorted by selective constraints arising from the cell and multi-cellular structures, which are themselves subject to the action of natural selection.  相似文献   
67.
Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n = 127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M1 and M2 is small. In contrast, Aterian H. sapiens root surface areas peak at M2. Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens.  相似文献   
68.
Since 1998, a multidisciplinary team works on the study of the representations in the cave Mayenne-Sciences (Thorigné-en-Charnie, Mayenne). Particularly, there are trials for U-TH (TIMH) datations of the speleothems recovering the drawings and fossils of the bats; this would help to know at what date the decorated cave was closed. The studies already allowed to know better the black drawings, executed with a wooden charcoal crayon. Thus, it was possible to make removals which gave two dates from the Gravettian phase; this feeds again the discussion about the chronocultural position of this cave, on of the most septentrional caves we know.  相似文献   
69.
In higher plants, lysophosphatidic acid acyltransferase (LPAAT), located in the cytoplasmic endomembrane compartment, plays an essential role in the synthesis of phosphatidic acid, a key intermediate in the biosynthesis of membrane phospholipids in all tissues and storage lipids in developing seeds. In order to assess the contribution of LPAATs to the synthesis of storage lipids, we have characterized two microsomal LPAAT isozymes, the products of homoeologous genes that are expressed in rapeseed (Brassica napus). DNA sequence homologies, complementation of a bacterial LPAAT-deficient mutant, and enzymatic properties confirmed that each of two cDNAs isolated from a Brassica napus immature embryo library encoded a functional LPAAT possessing the properties of a eukaryotic pathway enzyme. Analyses in planta revealed differences in the expression of the two genes, one of which was detected in all rapeseed tissues and during silique and seed development, whereas the expression of the second gene was restricted predominantly to siliques and developing seeds. Expression of each rapeseed LPAAT isozyme in Arabidopsis (Arabidopsis thaliana) resulted in the production of seeds characterized by a greater lipid content and seed mass. These results support the hypothesis that increasing the expression of glycerolipid acyltransferases in seeds leads to a greater flux of intermediates through the Kennedy pathway and results in enhanced triacylglycerol accumulation.With increasing environmental challenges and concerns, there is renewed interest in deriving plant-based sustainable alternatives for petroleum products, including carburants, lubricants, and industrial feed stocks. Modifying oilseed crops to produce oils of uniform composition containing fatty acids varying in chain length or possessing reactive functional groups is a primary objective (Jaworski and Cahoon, 2003), as is that of increasing the yield of seed oil (Lardizabal et al., 2008; Zheng et al., 2008). Early success in modifying seed oils to produce the more common fatty acids has been tempered by limited success in the production of high levels of unusual fatty acids (UFAs) in cultivated oilseeds (Thelen and Ohlrogge, 2002; Drexler et al., 2003). Such studies have led to the conclusion that in order to achieve levels of UFAs similar to those present in the oil of native species, enzymatic activities additional to fatty acid modification are necessary to optimize the synthesis (Mekhedov et al., 2001), stability (Eccleston and Ohlrogge, 1998), and channeling (Bafor et al., 1990) of the desired fatty acid into triacylglycerol (TAG).The synthesis of glycerolipids occurs in the cytoplasm using de novo-synthesized fatty acids exported from the plastid as acyl-CoA thioesters. The fatty acyl groups are incorporated into membrane and storage lipids by the sequential esterification of glycerol-3-phosphate by the action of glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) at sn-1 to form lysophosphatidic acid followed by lysophosphatidic acid acyltransferase (LPAAT; EC 2.3.1.51) at sn-2 to form phosphatidic acid (PA; Somerville et al., 2000). Dephosphorylation of PA results in the formation of diacylglycerol (DAG), which in developing seeds may be directed into the production of TAG by acyl-CoA-independent reactions or by diacylglycerol acyltransferase (DAGAT; EC 2.3.1.20; Roscoe, 2005). The substrate preferences for acyl-thioesters and the selectivities for the acceptor molecules displayed by the microsomal acyltransferases play a crucial role in establishing the acyl composition of lipids (Frentzen, 1998). The TAG synthesized in most oilseeds of agronomic importance contains fatty acids that are the same as those present in cytoplasmic membrane lipids. In contrast, the seeds of species that synthesize TAGs with exotic fatty acid compositions possess microsomal acyltransferases that facilitate the incorporation of UFAs into storage lipids because of their broad GPAT and/or their selective DAGAT specificities (Wiberg et al., 1994; Frentzen, 1998). Furthermore, oilseeds characterized by TAGs that contain UFAs at sn-2 possess additional seed-specific microsomal LPAATs (Brown et al., 1995; Hanke et al., 1995; Knutzon et al., 1995) that exhibit a wide variation in substrate preference and that serve to ensure the channeling of UFAs to this position, thereby segregating incompatible fatty acids away from membrane lipids.Cloning of cDNAs from cultivated and exotic plants and the availability of entirely sequenced genomes from plant and algal species have revealed that a minimum of two classes of genes encoding microsomal LPAATs exist (Frentzen, 1998) within a larger, LPAAT-like gene family containing acyltransferases as yet functionally uncharacterized but distinct from GPATs (Roscoe, 2005). The class A microsomal LPAATs defined by Frentzen (1998) possess substrate preferences for C18:1-CoA typical of enzymes involved in membrane lipid synthesis and are ubiquitously expressed in the plant. In contrast, individual members of the class B LPAATs display preferences for distinct, unusual saturated or unsaturated acyl groups and are normally expressed in storage organs. Although class B LPAATs have been exploited to alter the stereochemical composition of rapeseed (Brassica napus) oil to permit the incorporation of modified fatty acids at sn-2 (Lassner et al., 1995; Knutzon et al., 1999), a significant increase in the total amount of UFAs was not accomplished by the expression of the class B LPAATs alone. In contrast, the transformation of rapeseed and Arabidopsis (Arabidopsis thaliana) with a yeast gene encoding a variant LPAAT, SLC1-1, capable of accepting very long chain fatty acyl (VLCFA)-CoA substrates resulted in an increase in the total VLCFAs and, unexpectedly, in total oil content (Zou et al. 1997).In our efforts to modify the fatty acid composition of oil in rapeseed, in particular to increase the content of VLCFAs, we have addressed the question of optimizing the environment for the correct functioning of LPAATs encoded by transgenes. The above studies using the various LPAAT transgenes indicate that channeling of UFAs into sn-2 of oilseed species remains problematic. The ability to obtain oils with uniform composition strongly depends on the occupancy of sn-2 by UFAs, yet the level of occupancy of sn-2 by fatty acids corresponding to the selectivity of the introduced LPAAT is variable and relatively modest. Occupancy of sn-2 is determined in part by the ability of the LPAAT encoded by the transgene to compete with the endogenous enzyme, a function of the acyl-CoA substrates available to the enzymes and the relative efficiencies of the enzymes to compete for the donor and acceptor substrates. We argued that there is latitude for the reduction of competing activities using an antisense strategy, and although microsomal LPAATs have been cloned from rapeseed, there are no reports of the characterization of the enzyme. Our objectives in this work were to identify and evaluate the potential contribution of LPAAT isozymes to TAG biosynthesis in rapeseed, thereby discerning targets for optimizing efforts to modify oils for industrial purposes. In this study, we catalogue a previously undescribed complexity in microsomal LPAAT diversity and identify a LPAAT isozyme likely to play an important role in TAG synthesis in rapeseed. In contrast to diverged LPAATs of plant origin, we demonstrate a positive effect of the overexpression of microsomal LPAATs on oil content and seed weight.  相似文献   
70.

Background  

When heterologous recombinant proteins are produced in Escherichia coli, they often precipitate to form insoluble aggregates of unfolded polypeptides called inclusion bodies. These structures are associated with chaperones like IbpA. However, there are reported cases of "non-classical" inclusion bodies in which proteins are soluble, folded and active.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号