首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1185篇
  免费   74篇
  2023年   6篇
  2021年   23篇
  2020年   14篇
  2019年   13篇
  2018年   13篇
  2017年   10篇
  2016年   20篇
  2015年   59篇
  2014年   57篇
  2013年   84篇
  2012年   113篇
  2011年   82篇
  2010年   58篇
  2009年   50篇
  2008年   77篇
  2007年   76篇
  2006年   68篇
  2005年   58篇
  2004年   64篇
  2003年   52篇
  2002年   60篇
  2001年   11篇
  2000年   13篇
  1999年   8篇
  1998年   14篇
  1997年   12篇
  1996年   8篇
  1995年   11篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   3篇
  1990年   9篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1985年   8篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   7篇
  1976年   7篇
  1975年   5篇
  1974年   3篇
  1973年   5篇
  1970年   4篇
  1969年   7篇
排序方式: 共有1259条查询结果,搜索用时 15 毫秒
81.
For decades, palynologists working in tropical South America are using the genus Podocarpus as a climate indicator although without referring to any modern data concerning its distribution and limiting factors. With the aim to characterize the modern and past distribution of the southern conifer Podocarpus in Brazil and to obtain new information on the distribution of the Atlantic rainforest during the Quaternary, we examined herbarium data to locate the populations of three Brazilian endemic Podocarpus species: P. sellowii, P. lambertii , and P. brasiliensis , and extracted DNA from fresh leaves from 26 populations. Our conclusions are drawn in the light of the combination of these three disciplines: botany, palynology, and genetics. We find that the modern distribution of endemic Podocarpus populations shows that they are widely dispersed in eastern Brazil, from north to south and reveals that the expansion of Podocarpus recorded in single Amazonian pollen records may have come from either western or eastern populations. Genetic analysis enabled us to delimit regional expansion: between 5° and 15° S grouping northern and central populations of P. sellowii expanded c . 16,000 years ago; between 15° and 23° S populations of either P. lambertii or sellowii expanded at different times since at least the last glaciation; and between 23° and 30° S, P. lambertii appeared during the recent expansion of the Araucaria forest. The combination of botany, pollen, and molecular analysis proved to be a rapid tool for inferring distribution borders for sparse populations and their regional evolution within tropical ecosystems. Today the refugia of rainforest communities we identified are crucial hotspots to allow the Atlantic forest to survive under unfavourable climatic conditions and, as such, offer the only possible opportunity for this type of forest to expand in the event of a future climate change.  相似文献   
82.
83.
Projections indicate an elevation of the atmospheric CO2 concentration ([CO2]) concomitant with an intensification of drought for this century, increasing the challenges to food security. On the one hand, drought is a main environmental factor responsible for decreasing crop productivity and grain quality, especially when occurring during the grain-filling stage. On the other hand, elevated [CO2] is predicted to mitigate some of the negative effects of drought. Sorghum (Sorghum bicolor) is a C4 grass that has important economical and nutritional values in many parts of the world. Although the impact of elevated [CO2] and drought in photosynthesis and growth has been well documented for sorghum, the effects of the combination of these two environmental factors on plant metabolism have yet to be determined. To address this question, sorghum plants (cv BRS 330) were grown and monitored at ambient (400 µmol mol−1) or elevated (800 µmol mol−1) [CO2] for 120 d and subjected to drought during the grain-filling stage. Leaf photosynthesis, respiration, and stomatal conductance were measured at 90 and 120 d after planting, and plant organs (leaves, culm, roots, prop roots, and grains) were harvested. Finally, biochemical composition and intracellular metabolites were assessed for each organ. As expected, elevated [CO2] reduced the stomatal conductance, which preserved soil moisture and plant fitness under drought. Interestingly, the whole-plant metabolism was adjusted and protein content in grains was improved by 60% in sorghum grown under elevated [CO2].Global food demand is projected to increase up to 110% by the middle of this century (Tilman et al., 2011; Alexandratos and Bruinsma, 2012), particularly due to a rise in world population that is likely to plateau at about 9 billion people (Godfray et al., 2010). Additionally, the average concentration of atmospheric CO2 ([CO2]) has increased 1.75 µmol mol−1 per year between 1975 and today, reaching 400 µmol mol−1 in April 2015 (NOAA, 2015). According to the A2 emission scenario from the U.S. Environmental Protection Agency, in the absence of explicit climate change policy, atmospheric CO2 concentrations will reach 800 µmol mol−1 by the end of this century. The increasing atmospheric [CO2] is resulting in global climate changes, such as reduction in water availability and elevation in temperature. These factors are expected to heavily influence food production in the next years (Godfray and Garnett, 2014; Magrin et al., 2014).Sorghum (Sorghum bicolor) is a C4 grass, considered a staple food grain for millions of the poorest and most food-insecure people in the semiarid tropics of Africa, Asia, and Central America, serving as an important source of energy, proteins, vitamins, and minerals (Taylor et al., 2006). Moreover, this crop is used for animal feed and as industrial raw material in developed countries such as the United States, which is the main world producer (FAO, 2015). With a fully sequenced genome (Paterson et al., 2009) and over 45,000 accessions representing a large geographic and genetic diversity, sorghum is a good model system in which to study the impact of global climate changes in C4 grasses.The increase in [CO2] in the atmosphere, which is the main driver of global climate changes (Meehl et al., 2007), is predicted to boost photosynthesis rates and productivity in a series of C3 legumes and cereals, mainly due to a decrease in the photorespiration process (Grashoff et al., 1995; Long et al., 2006). On the contrary, due to their capacity to concentrate CO2 in bundle sheath cells and reduce photorespiration to virtually zero, C4 plants are unlikely to respond to the elevation of atmospheric [CO2] (Leakey, 2009). However, even for C4 plants, elevated [CO2] can ameliorate the effects caused by drought, maintaining higher photosynthetic rates. This is due to an improvement in the efficiency of water use that is achieved by the reduction in stomatal conductance (Leakey et al., 2004; Markelz et al., 2011).The rate of photosynthesis as well as the redistribution of photoassimilates accumulated in different plant tissues during the day and/or during vegetative growth are crucial to grain development, and later, to its filling (Schnyder, 1993). Due to this relationship, any environmental stress such as drought occurring during the reproductive phase has the potential to result in poor grain filling and losses in yield (Blum et al., 1997). For instance, postanthesis drought can cause up to 30% decrease in yield (Borrell et al., 2000). It is also known that elevated [CO2], drought, high temperature, and any combinations of these stresses can lead to significant changes in grain composition (Taub et al., 2008; Da Matta et al., 2010; Uprety et al., 2010; Madan et al., 2012), suggesting diverse metabolic alterations and/or adaptations that occur in the plant when it is cultivated in such conditions.Although the impacts of elevated [CO2] and drought on photosynthesis and the growth of sorghum have been well documented (Conley et al., 2001; Ottman et al., 2001; Wall et al., 2001), no attention has been given to the impact of the combination of these two environmental changes on plant metabolism and composition. Regarding physiology, studies on the growth of sorghum under elevated [CO2] and drought showed an increase of the net assimilation rate of 23% due to a decrease of 32% in stomatal conductance (Wall et al., 2001). This resulted in sorghum’s ability to use water 17% more efficiently (Conley et al., 2001). An improvement in the final overall biomass under elevated [CO2] and drought has also been described (Ottman et al., 2001), but without a significant effect in grain yield (Wall et al., 2001).Few studies have been monitoring metabolic pathways in plants under elevated [CO2] (Li et al., 2008; Aranjuelo et al., 2013) and drought (Silvente et al., 2012; Nam et al., 2015; Wenzel et al., 2015). Furthermore, to our knowledge, there are only two reports in which metabolite profiles or metabolic pathways were investigated under the combination of these two environmental conditions (Sicher and Barnaby, 2012; Zinta et al., 2014). Although it is widely accepted that whole-plant metabolism and composition can impact grain filling and yield, metabolic studies conducted so far have focused on a specific plant organ. For instance, Sicher and Barnaby (2012) analyzed the metabolite profile of leaves from maize (Zea mays) plants that were grown under elevated [CO2] and drought, but they did not show how those environmental changes could have affected the metabolism of other tissues (e.g. culm and roots) or how they might have influenced the biomass or grain composition.In order to address how the combination of elevated [CO2] and drought can modify whole-plant metabolism as well as biomass composition in sorghum, this study aimed to (1) evaluate photosynthesis, growth, and yield; (2) underline the differences in biomass composition and primary metabolite profiles among leaves, culm, roots, prop roots, and grains; and (3) determine the effect of elevated [CO2] and drought on the primary metabolism of each organ.  相似文献   
84.
85.
The question of how animals process stimulus mixtures remains controversial as opposing views propose that mixtures are processed analytically, as the sum of their elements, or holistically, as unique entities different from their elements. Overshadowing is a widespread phenomenon that can help decide between these alternatives. In overshadowing, an individual trained with a binary mixture learns one element better at the expense of the other. Although element salience (learning success) has been suggested as a main explanation for overshadowing, the mechanisms underlying this phenomenon remain unclear. We studied olfactory overshadowing in honeybees to uncover the mechanisms underlying olfactory-mixture processing. We provide, to our knowledge, the most comprehensive dataset on overshadowing to date based on 90 experimental groups involving more than 2700 bees trained either with six odourants or with their resulting 15 binary mixtures. We found that bees process olfactory mixtures analytically and that salience alone cannot predict overshadowing. After normalizing learning success, we found that an unexpected feature, the generalization profile of an odourant, was determinant for overshadowing. Odourants that induced less generalization enhanced their distinctiveness and became dominant in the mixture. Our study thus uncovers features that determine odourant dominance within olfactory mixtures and allows the referring of this phenomenon to differences in neural activity both at the receptor and the central level in the insect nervous system.  相似文献   
86.
The aggregation of α-synuclein (α-Syn) is linked to Parkinson’s disease. The mechanism of early aggregation steps and the effect of pathogenic single-point mutations remain elusive. We report here a single-molecule fluorescence study of α-Syn dimerization and the effect of mutations. Specific interactions between tethered fluorophore-free α-Syn monomers on a substrate and fluorophore-labeled monomers diffusing freely in solution were observed using total internal reflection fluorescence microscopy. The results showed that wild-type (WT) α-Syn dimers adopt two types of dimers. The lifetimes of type 1 and type 2 dimers were determined to be 197 ± 3 ms and 3334 ± 145 ms, respectively. All three of the mutations used, A30P, E46K, and A53T, increased the lifetime of type 1 dimer and enhanced the relative population of type 2 dimer, with type 1 dimer constituting the major fraction. The kinetic stability of type 1 dimers (expressed in terms of lifetime) followed the order A30P (693 ± 14 ms) > E46K (292 ± 5 ms) > A53T (226 ± 6 ms) > WT (197 ± 3 ms). Type 2 dimers, which are more stable, had lifetimes in the range of several seconds. The strongest effect, observed for the A30P mutant, resulted in a lifetime 3.5 times higher than observed for the WT type 1 dimer. This mutation also doubled the relative fraction of type 2 dimer. These data show that single-point mutations promote dimerization, and they suggest that the structural heterogeneity of α-Syn dimers could lead to different aggregation pathways.  相似文献   
87.

Purpose  

As new alternative automotive fuels are being developed, life cycle assessment (LCA) is being used to assess the sustainability of these new options. A fuel LCA is commonly referred as a “Well To Wheels” analysis and calculates the environmental impacts of producing the fuel (the “Well To Tank” stage) and using it to move a car (the “Tank To Wheels” stage, TTW). The TTW environmental impacts are the main topic of this article.  相似文献   
88.
A new fuel additive, namely solketal tert-butyl ether (STBE), was developed and optimized under continuous flow conditions using a Corning? Advanced-Flow? glass reactor. STBE was obtained in two steps from glycerol, a renewable building-block produced in large amount in the processing of biodiesel. The advantages of the highly engineered Corning glass reactor included high mixing and heat-exchange efficiency, chemical resistance under corrosive flow conditions and a small hold-up. A robust, continuous, green and safe industrial-scale process is described.  相似文献   
89.
Despite its widespread distribution and high levels of phylogenetic diversity, microbes are poorly understood creatures. We applied a phylogenetic ecology approach in the Kingdom Euryarchaeota (Archaea) to gain insight into the environmental distribution and evolutionary history of one of the most ubiquitous and largely unknown microbial groups. We compiled 16S rRNA gene sequences from our own sequence libraries and public genetic databases for two of the most widespread mesophilic Euryarchaeota clades, Lake Dagow Sediment (LDS) and Rice Cluster-V (RC-V). The inferred population history indicated that both groups have undergone specific nonrandom evolution within environments, with several noteworthy habitat transition events. Remarkably, the LDS and RC-V groups had enormous levels of genetic diversity when compared with other microbial groups, and proliferation of sequences within each single clade was accompanied by significant ecological differentiation. Additionally, the freshwater Euryarchaeota counterparts unexpectedly showed high phylogenetic diversity, possibly promoted by their environmental adaptability and the heterogeneous nature of freshwater ecosystems. The temporal phylogenetic diversification pattern of these freshwater Euryarchaeota was concentrated both in early times and recently, similarly to other much less diverse but deeply sampled archaeal groups, further stressing that their genetic diversity is a function of environment plasticity. For the vast majority of living beings on Earth (i.e. the uncultured microorganisms), how they differ in the genetic or physiological traits used to exploit the environmental resources is largely unknown. Inferring population history from 16S rRNA gene-based molecular phylogenies under an ecological perspective may shed light on the intriguing relationships between lineage, environment, evolution and diversity in the microbial world.  相似文献   
90.

Background  

Streptococcus suis is a major swine pathogen worldwide that causes meningitis, septicemia, arthritis, and endocarditis. Using animal models, a surface-associated subtilisin-like protease (SspA) has recently been shown to be an important virulence factor for S. suis. In this study, we hypothesized that the S. suis SspA subtilisin-like protease may modulate cytokine secretion by macrophages thus contributing to the pathogenic process of meningitis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号