首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7054篇
  免费   491篇
  2024年   9篇
  2023年   37篇
  2022年   26篇
  2021年   207篇
  2020年   120篇
  2019年   162篇
  2018年   197篇
  2017年   154篇
  2016年   271篇
  2015年   398篇
  2014年   423篇
  2013年   525篇
  2012年   611篇
  2011年   558篇
  2010年   376篇
  2009年   354篇
  2008年   424篇
  2007年   433篇
  2006年   326篇
  2005年   299篇
  2004年   308篇
  2003年   261篇
  2002年   269篇
  2001年   100篇
  2000年   59篇
  1999年   69篇
  1998年   78篇
  1997年   68篇
  1996年   39篇
  1995年   37篇
  1994年   46篇
  1993年   25篇
  1992年   39篇
  1991年   26篇
  1990年   24篇
  1989年   18篇
  1988年   20篇
  1987年   11篇
  1986年   12篇
  1985年   19篇
  1984年   21篇
  1983年   12篇
  1982年   15篇
  1981年   14篇
  1980年   10篇
  1979年   5篇
  1978年   7篇
  1976年   5篇
  1974年   4篇
  1973年   4篇
排序方式: 共有7545条查询结果,搜索用时 78 毫秒
991.
992.
Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.  相似文献   
993.

Background

A distinctive feature of type 2 diabetes is inability of insulin-secreting β-cells to properly respond to elevated glucose eventually leading to β-cell failure. We have hypothesized that an abnormally increased NO production in the pancreatic islets might be an important factor in the pathogenesis of β-cell dysfunction.

Principal Findings

We show now that islets of type 2 spontaneous diabetes in GK rats display excessive NO generation associated with abnormal iNOS expression in insulin and glucagon cells, increased ncNOS activity, impaired glucose-stimulated insulin release, glucagon hypersecretion, and impaired glucose-induced glucagon suppression. Pharmacological blockade of islet NO production by the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) greatly improved hormone secretion from GK islets suggesting islet NOS activity being an important target to inactivate for amelioration of islet cell function. The incretin hormone GLP-1, which is used in clinical practice suppressed iNOS and ncNOS expression and activity with almost full restoration of insulin release and partial restoration of glucagon release. GLP-1 suppression of iNOS expression was reversed by PKA inhibition but unaffected by the proteasome inhibitor MG132. Injection of glucose plus GLP-1 in the diabetic rats showed that GLP-1 amplified the insulin response but induced a transient increase and then a poor depression of glucagon.

Conclusion

The results suggest that abnormally increased NO production within islet cells is a significant player in the pathogenesis of type 2 diabetes being counteracted by GLP-1 through PKA-dependent, nonproteasomal mechanisms.  相似文献   
994.
Antibiotic residues that may be present in carcasses of medicated livestock could pass to and greatly reduce scavenger wildlife populations. We surveyed residues of the quinolones enrofloxacin and its metabolite ciprofloxacin and other antibiotics (amoxicillin and oxytetracycline) in nestling griffon Gyps fulvus, cinereous Aegypius monachus and Egyptian Neophron percnopterus vultures in central Spain. We found high concentrations of antibiotics in the plasma of many nestling cinereous (57%) and Egyptian (40%) vultures. Enrofloxacin and ciprofloxacin were also found in liver samples of all dead cinereous vultures. This is the first report of antibiotic residues in wildlife. We also provide evidence of a direct association between antibiotic residues, primarily quinolones, and severe disease due to bacterial and fungal pathogens. Our results indicate that, by damaging the liver and kidney and through the acquisition and proliferation of pathogens associated with the depletion of lymphoid organs, continuous exposure to antibiotics could increase mortality rates, at least in cinereous vultures. If antibiotics ingested with livestock carrion are clearly implicated in the decline of the vultures in central Spain then it should be considered a primary concern for conservation of their populations.  相似文献   
995.
996.
Reversible phosphorylation of proteins regulates numerous aspects of cell function, and abnormal phosphorylation is causal in many diseases. Pyruvate dehydrogenase complex (PDC) is central to the regulation of glucose homeostasis. PDC exists in a dynamic equilibrium between de-phospho-(active) and phosphorylated (inactive) forms controlled by pyruvate dehydrogenase phosphatases (PDP1,2) and pyruvate dehydrogenase kinases (PDK1-4). In contrast to the reciprocal regulation of the phospho-/de-phospho cycle of PDC and at the level of expression of the isoforms of PDK and PDP regulated by hormones and diet, there is scant evidence for regulatory factors acting in vivo as reciprocal "on-off" switches. Here we show that the putative insulin mediator inositol phosphoglycan P-type (IPG-P) has a sigmoidal inhibitory action on PDK in addition to its known linear stimulation of PDP. Thus, at critical levels of IPG-P, this sigmoidal/linear model markedly enhances the switchover from the inactive to the active form of PDC, a "push-pull" system that, combined with the developmental and hormonal control of IPG-P, indicates their powerful regulatory function. The release of IPGs from cell membranes by insulin is significant in relation to diabetes. The chelation of IPGs with Mn2+ and Zn2+ suggests a role as "catalytic chelators" coordinating the traffic of metal ions in cells. Synthetic inositol hexosamine analogues are shown here to have a similar linear/sigmoidal reciprocal action on PDC exerting push-pull effects, suggesting their potential for treatment of metabolic disorders, including diabetes.  相似文献   
997.
New agricultural techniques are attempting to reduce the application of synthesized pesticides and replace them with new environmentally friendly methods such as mass trapping, mating disruption, or chemosterilization techniques. All these methods are based on the release of a lure for insect attraction or confusion. The success of the chosen method depends on the quality of the attractant emission from the dispenser. Currently, used dispensers with a polymeric matrix and new dispensers with mesoporous inorganic materials were evaluated to obtain more efficient emission kinetics. In this study, the selected pest was the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) and the lure used was trimedlure (TML). The dispensers were validated by means of a field study comparing insect catches with attractant release values. As a result, we have demonstrated that mesoporous dispensers have a clearly longer lifetime than the polymeric plug. Furthermore, the attractant release rate is less dependent on temperature in mesoporous than in polymeric dispensers.  相似文献   
998.
High poly(3-hydroxybutyrate) (PHB) content and volumetric productivity were achieved by fed-batch culture of Halomonas boliviensis using a defined medium. Initial shake flask cultivations in a minimal medium revealed that the growth of H. boliviensis was supported only when the medium was supplemented with aspartic acid, glycine, or glutamine. Addition of 0.1% (w/v) glutamine in the medium resulted in the highest cell dry weight (CDW; 3.9 g l−1). Glutamine was replaced by the less expensive monosodium glutamate (MSG) in the medium without any notable change in the final cell density. Effect of initial concentrations of NH4Cl and K2HPO4 on cell growth and PHB accumulation by H. boliviensis was then analyzed using a fed-batch fermentation system. The best conditions for PHB production by H. boliviensis were attained using 0.4% (w/v) NH4Cl and 0.22% (w/v) K2HPO4 and adding MSG intermittently to the fermentor. Poly(3-hydroxybutyrate) content and CDW reached 90 wt.% and 23 g l−1, respectively, after 18 h of cultivation. In order to increase CDW and PHB content, MSG, NH4Cl, and K2HPO4 were initially fed to the fermentor to maintain their concentrations at 2%, 0.4%, and 0.22% (w/v), respectively, and subsequently their feed was suppressed. This resulted in a CDW of 44 g l−1, PHB content of 81 wt.%, and PHB volumetric productivity of 1.1 g l−1 h−1.  相似文献   
999.
Shellfish production is often affected by bacterial pathogens that cause high losses in hatcheries and nurseries. We evaluated the relative survival of larvae and juveniles of 3 Crassostrea virginica oyster lines: (1) GHP, a Rhode Island line; (2) NEHY, a line resistant to dermo and multinucleated sphere X diseases; and (3) FLOWERS, a line resistant to Roseovarius oyster disease, experimental challenge with Vibrio spp. isolates RE22 and RE101, causative agents of bacillary necrosis in Pacific oyster larvae, and the type strain of Roseovarius crassostreae, causative agent of Roseovarius oyster disease. All of the isolates were able to induce significant mortalities in oyster larvae and juveniles. Susceptibility to bacterial challenge in larvae was significantly higher at 25 degrees C than at 20 degrees C. Susceptibility decreased with oyster age; mean survival time ranged from 24 h in oyster larvae to more than 6 wk in juveniles. Significant differences in susceptibility to bacterial challenge were observed between oyster lines; NEHY was the most resistant line overall. Extracellular products (ECPs) from Vibrio sp. RE22 and R. crassostreae, as well as viable bacteria, were toxic to hemocytes from the 3 oyster lines, suggesting that ECPs are involved in pathogenesis and that external and mucosal barriers to infection are major contributors to resistance to bacterial challenge. These protocols will be useful in the elucidation of mechanisms of bacterial pathogenesis and resistance to infection in oysters.  相似文献   
1000.
The hemipelagic domain of the ancient southern continental margin of Iberia is home to a strongly condensed pelagic succession (6–15 cm thick) characterized by the presence of phosphate stromatolites. This succession, probably generated in the slope of the continental margin, records a period of some 9 Ma, corresponding to the latest Maastrichtian to Late Thanetian interval. A microstratigraphical analysis allows for characterizing and biostratigraphically dating six successive developmental stages in the succession, which outline the main environmental evolution of the depositional setting. The first of them determined the generation of a submarine hardground during the latest Maastrichtian to earliest Danian interval. The other five are represented by five successive microstratigraphical, unconformity-bounded, genetic units, respectively Early–Middle Danian, Late Danian–Early Selandian, intra-Selandian, Late Selandian–Early Thanetian, and Middle–?Late Thanetian in age. The three oldest units are characterized by the accretion of phosphate stromatolites, favoured by very low rates of pelagic sedimentation and by a microbially mediated extra input of phosphate. The two youngest units are dominated by carbonate deposition, which has always taken place at very low rates. Condensed sedimentation was abruptly interrupted at the end of the Palaeocene (?latest Thanetian), when the condensed succession and its hosting substrate were gravitationally slumped and re-deposited at the base of the slope in the form of a mega-debris flow that can be now observed in Sierra de Aixorta (Alicante, SE Spain). The Aixorta pelagic phosphatic stromatolites are among the youngest ever described, and their existence suggests that the oceanographic conditions necessary for their development prevailed during most of the Palaeocene, but disappeared during the Late Selandian, never to return.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号