首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   20篇
  2023年   3篇
  2022年   2篇
  2021年   9篇
  2020年   5篇
  2019年   2篇
  2018年   9篇
  2017年   6篇
  2016年   13篇
  2015年   20篇
  2014年   16篇
  2013年   20篇
  2012年   22篇
  2011年   31篇
  2010年   14篇
  2009年   19篇
  2008年   21篇
  2007年   24篇
  2006年   12篇
  2005年   12篇
  2004年   11篇
  2003年   10篇
  2002年   11篇
  2000年   3篇
  1999年   1篇
  1998年   6篇
  1997年   4篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1972年   1篇
排序方式: 共有311条查询结果,搜索用时 828 毫秒
61.
Aminoacyl-tRNA synthetases (aaRSs) decipher the genetic code, covalently linking amino acids to cognate tRNAs, thus preparing substrates for the process of translation. Although aaRSs funtion primarily in translation and are localized in cytosol, mitochondria and chloroplasts there are many reports on their additional functions and subcellular destinations beyond translation. However, data on plant aaRSs are scarce. Initial analysis of amino acid sequence of Arabidopsis thaliana seryl-tRNA synthetase (SerRS) suggested that protein contains putative nuclear localization signals. GFP-localization experiments in transiently transformed epidermal onion cells and Arabidopsis protoplasts gave ambiguous results because in some cells SerRS appeared to be dually localized to both cytosol and nucleus. However, data obtained on transgenic lines expressing SerRS-TAP and GFP-SerRS revealed exclusive cytosolic location of SerRS. Subcellular distribution of SerRS did not change during stress. Cytosolic Arabidopsis SerRS was expressed and purified. The enzyme efficiently aminoacylated eukaryotic and bacterial tRNAsSer, that are structurally very different. Given the fact that the same behavior was previously shown for monocot maize SerRS, it seems that plant SerRSs exhibit unusually broad tRNASer specificity, unlike SerRSs from other organisms. Possible functional implications of this unique characteristic of plant SerRSs are discussed.  相似文献   
62.
63.
Abstract: The uptake of enkephalin-(5-L-leucine) (Leu-en-kephalin) at the luminal side of the blood-brain barrier was measured by means of an in situ vascular brain perfusion technique in the anaesthetized guinea pig. This method allows measurements of cerebrovascular peptide uptake over periods of up to 20 min, and excludes the solute under study from the general circulation and systemic metabolic influences. A capillary unidirectional transfer constant, Kin, for [tyrosyl-3,5-3H]Leu-enkephalin was estimated graphically from the multiple-time brain uptake data in the presence of different concentrations of unlabelled peptide, and dose-dependent self-inhibition was demonstrated. Analysis of unidirectional influx of blood-borne Leu-en kephalin into the brain revealed Michaelis-Menten saturation kinetics in the parietal cortex, caudate nucleus, and hippocampus, with Vmax between 0.14 and 0.16 nmol min?1 g?1 and Km ranging from 34 to 41 μM, for the saturable component, whereas the estimated diffusion constant, Kd, was not significantly different from zero. Entry of [3H]Leu-enkephalin was not inhibited in the presence of either a 5 mM concentration of unlabelled L-tyrosine, tyro-sylglycine, and tyrosylglycylglycine, or aminopeptidase inhibitor, bestatin (0.5 mM), suggesting that the saturable mechanism of the tracer at the luminal side of the blood-brain barrier does not involve uptake of the peptide's N-terminal amino acid and/or its tyrosine-containing fragments. The specific δ-opioid antagonist, allyl2-Tyr-AIB-Phe-OH, and μ-opioid receptor agonist, Tyr-D-Ala-Gly-Me-Phe-NH(CH2)20H, at concentrations in the perfusate above the Km value for the saturable transport of Leu-enkephalin, did not affect significantly uptake of [3H]Leu-enkephalin. The present study provides, for the first time, a characterization of the kinetic parameters of the unidirectional uptake of a peptide from the luminal side of the blood-brain barrier  相似文献   
64.
Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-β1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles.  相似文献   
65.
Many bacterial pathogens express small G5 domains that exist in the context of various membrane‐anchored proteins and these G5 domains have been associated with colonization, cellular adhesion, and biofilm formation. However, despite over a decade since the computational prediction of these G5 domains, many remain uncharacterized, particularly those from Streptococcus pneumoniae. Of five previously predicted G5 domains we found that four of these, all derived from S. pneumoniae, are independently folded modules. As one of these exhibits extreme line broadening due to self‐association, we were able to use NMR solution studies to probe the potential ligand interactions of the remaining three G5 domains. None of these G5 domains engage N‐acetylglucosamine (NAG) as previously predicted but do interact with other small molecules that may modulate adherence to both bacteria and host cells. Specifically, while all G5 domains tested engage Zn, only one of these G5 domains engage heparin. NMR solution structural studies of the IgA1 Protease G5 (IgA1P‐G5) and endo‐beta‐N‐acetylglucosaminidase‐D G5 (ENDD‐G5) also facilitated identification of the ligand binding sites and confirm the typical G5 fold that comprises two connected β‐sheets with no canonical core. NMR relaxation experiments indicate flexibility on both ends and within the connecting regions between the β‐sheets. Our studies thus establish a basis for future biological experiments to test whether the ligands presented here are involved in bacterial adherence, either to bacteria or to host cells.  相似文献   
66.
The effect of reduced availability of sugars on growth and essential metabolic processes in roots, resulting from decreased photosynthesis under salinity, was excluded by establishing a non-photosynthetic model-system in this study: root cultures of Centaurium maritimum (L.) Fritch and Centaurium spicatum (L.) Fritch. The contribution of inorganic cations and organic compounds (e.g. carbohydrates and amino acids) to the osmotic adjustment (OA) in roots during short-term exposure to various salt concentrations (0, 50, 100 or 200 mM NaCl) was emphasized. Observed morphological and histological changes in roots were species specific, and were dependent on salinity level. Although C. spicatum appears to be more tolerant to salt stress, both species employed similar strategies in response to elevated salinity to different extents, and displayed effective OA mechanisms. Under low and moderate salinity, inorganic cations were the major contributors to OA in roots of both species, followed by soluble sugars, while the relative contribution of proline (Pro) and free amino acids was insignificant. Osmotic adjustment under severe stress appears to be mediated by increased accumulation of organic compounds. The analysis of the intraspecies variability in salt response of C. spicatum and C. maritimum roots enabled the identification of some organic compounds which could be used as potential biochemical markers in screening for salt tolerance, including Pro in C. spicatum, and trehalose and polyols in C. maritimum.  相似文献   
67.
A heterotrophic model system was established in our studies in order to differentiate the effect of high salt concentrations in external medium on growth and sugar metabolism in roots from the effect of reduced sugar availability resulting from decreased photosynthesis under salinity. Soluble sugar content and the activity of acid invertase in root cultures of salt-tolerant (ST) and salt-sensitive (SS) Schenkia spicata (L.) Mansion genotypes were investigated during exposure to different NaCl concentrations (0-200mM). Their response to severe salinity was characterized by a metabolic adjustment that led to the accumulation of sucrose (Suc) in root tissues. There was clear evidence that cell wall invertase (CW-Inv) is the major contributor to the Suc/hexose ratio in roots during exposure to elevated salinity. The results of CW-Inv activity and immunodetection assays in our study suggest that the regulation of CW-Inv expression is most likely achieved in a salt stress dependent manner. Also, NaCl modulated soluble acid invertase (SA-Inv) expression differentially in SS and ST genotypes of S. spicata. Regardless of the salt treatment, genotype, or the amount of enzyme, SA-Inv activity was generally low, indicating regulation at the posttranslational level. The results suggest no direct role of SA-Inv in the regulation of the root tissue carbohydrate pool and therefore in the control of the availability of glucose and fructose for the primary metabolism and/or osmotic adjustment in the present heterotrophic model system.  相似文献   
68.
Polyketides are a group of bioactive compounds from bacteria, plants, and fungi. To increase the availability of analogs for testing, the active sites of polyketide synthases are often substituted with homologous domains having altered substrate specificities. This study reports the design of polymerase chain reaction primers that enables isolation of entire active site domains from type I polyketide synthases with native interdomain linkers. This bypasses the need for further genetic screening to obtain functional units for use in genetic engineering. This is especially important in bioprospecting projects exploring new environments for bioresources.  相似文献   
69.
With the recent advances in NMR relaxation techniques, protein motions on functionally important timescales can be studied at atomic resolution. Here, we have used NMR-based relaxation experiments at several temperatures and both 600 and 900 MHz to characterize the inherent dynamics of the enzyme cyclophilin-A (CypA). We have discovered multiple chemical exchange processes within the enzyme that form a “dynamic continuum” that spans 20–30 Å comprising active site residues and residues proximal to the active site. By combining mutagenesis with these NMR relaxation techniques, a simple method of counting the dynamically sampled conformations has been developed. Surprisingly, a combination of point mutations has allowed for the specific regulation of many of the exchange processes that occur within CypA, suggesting that the dynamics of an enzyme may be engineered.  相似文献   
70.
Plant cells contain a mixture of 26S and 20S proteasomes that mediate ubiquitin-dependent and ubiquitin-independent proteolysis, respectively. The 26S proteasome contains the 20S proteasome and one or two regulatory particles that are required for ubiquitin-dependent degradation. Comparative analyses of Arabidopsis proteasome mutants revealed that a decrease in 26S proteasome biogenesis causes heat shock hypersensitivity and reduced cell division rates that are compensated by increased cell expansion. Loss of 26S proteasome function also leads to an increased 20S proteasome biogenesis, which in turn enhances the cellular capacity to degrade oxidized proteins and thus increases oxidative stress tolerance. These findings suggest the intriguing possibility that 26S and 20S proteasome activities are regulated to control plant development and stress responses. This mini-review highlights some of the recent studies on proteasome regulation in plants.Key words: proteasome, cell division, ubiquitin-dependent proteolysis, ubiquitin-independent proteolysis, stress responses  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号