首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3338篇
  免费   261篇
  国内免费   3篇
  2024年   5篇
  2023年   10篇
  2022年   14篇
  2021年   92篇
  2020年   53篇
  2019年   75篇
  2018年   112篇
  2017年   102篇
  2016年   135篇
  2015年   196篇
  2014年   213篇
  2013年   230篇
  2012年   307篇
  2011年   294篇
  2010年   147篇
  2009年   142篇
  2008年   207篇
  2007年   209篇
  2006年   148篇
  2005年   157篇
  2004年   175篇
  2003年   117篇
  2002年   107篇
  2001年   66篇
  2000年   73篇
  1999年   46篇
  1998年   33篇
  1997年   13篇
  1996年   14篇
  1995年   15篇
  1994年   12篇
  1993年   4篇
  1992年   16篇
  1991年   15篇
  1990年   7篇
  1989年   8篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1984年   4篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
  1960年   2篇
  1959年   1篇
排序方式: 共有3602条查询结果,搜索用时 156 毫秒
41.
Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.  相似文献   
42.
A Gram-staining-negative, rod-shaped and red-pigmented bacterial strain, HMD3125T, was isolated from a solar saltern in Jeungdo, Republic of Korea. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD3125T formed a lineage within the genus Pontibacter and was similar to Pontibacter salisaro (96.1%) and P. korlensis (95.3%). The major fatty acids of strain HMD3125T were summed feature 4 (comprising iso-C17:1 I and/or anteiso-C17:1 B; 30.4%), iso-C15:0 (20.4%) and iso-C17:0 3OH (17.2%). The polar lipid profile of HMD3125T consisted of the phosphatidylethanolamine, four unidentified polar lipids, unidentified phospholipid, unidentified aminolipid and unidentified aminophospholipid. Strain HMD3125T contained MK-7 as the predominant menaquinone and sym-homospermidine as the major polyamine. The DNA G+C content of strain HMD3125T was 45.6 mol%. Strain HMD3125T assigned as a novel species in the genus Pontibacter, for which the name Pontibacter jeungdoensis sp. nov. is proposed. The type strain is HMD3125T (=KCTC 23156T =CECT 7710T).  相似文献   
43.
A methanolic extract of dried leaves of Polygala japonica Houtt (Polygalaceae) significantly attenuated nitric oxide production in lipopolysaccharide-simulated BV2 microglia. Five anthraquinones chrysophanol (1), emodin (2), aloe-emodin (3), emodin 8-O-β-D-glucopyranoside (4) and trihydroxy anthraquinone (5), and four flavonoids kaempferol (6), chrysoeriol (7), kaempferol 3-gentiobioside (8) and isorhamnetin (9) were isolated from the methanolic extract using bioactivity-guided fractionation. Among them, compounds 14, 6 and 7 showed significant inhibitory effect on lipopolysaccharide-induced nitric oxide production in BV2 microglia at the concentrations ranging from 1.0 to 100.0 μM.  相似文献   
44.

Introduction

Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients.

Methods

Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise).

Results

The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study.

Conclusion

A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients.

Trial registration

NCT01515163.  相似文献   
45.
46.
47.
Exosomes are small membrane vesicles released by a variety of cell types. Exosomes contain genetic materials, such as mRNAs and microRNAs (miRNAs), implying that they may play a pivotal role in cell-to-cell communication. Mesenchymal stem cells (MSCs), which potentially differentiate into multiple cell types, can migrate to the tumor sites and have been reported to exert complex effects on tumor progression. To elucidate the role of MSCs within the tumor microenvironment, previous studies have suggested various mechanisms such as immune modulation and secreted factors of MSCs. However, the paracrine effects of MSC-derived exosomes on the tumor microenvironment remain to be explored. The hypothesis of this study was that MSC-derived exosomes might reprogram tumor behavior by transferring their molecular contents. To test this hypothesis, exosomes from MSCs were isolated and characterized. MSC-derived exosomes exhibited different protein and RNA profiles compared with their donor cells and these vesicles could be internalized by breast cancer cells. The results demonstrated that MSC-derived exosomes significantly down-regulated the expression of vascular endothelial growth factor (VEGF) in tumor cells, which lead to inhibition of angiogenesis in vitro and in vivo. Additionally, miR-16, a miRNA known to target VEGF, was enriched in MSC-derived exosomes and it was partially responsible for the anti-angiogenic effect of MSC-derived exosomes. The collective results suggest that MSC-derived exosomes may serve as a significant mediator of cell-to-cell communication within the tumor microenvironment and suppress angiogenesis by transferring anti-angiogenic molecules.  相似文献   
48.
49.
Highlights? Wnt inhibitor sFRP3 exhibits activity-dependent expression in the adult hippocampus ? sFRP3 maintains quiescence of adult hippocampal radial glia-like neural stem cells ? sFRP3 inhibits maturation, dendritic development, and spinal formation of new neurons ? sFRP3 partially mediates activity-dependent adult hippocampal neurogenesis  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号