首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49536篇
  免费   4546篇
  国内免费   30篇
  2021年   743篇
  2020年   452篇
  2019年   567篇
  2018年   701篇
  2017年   647篇
  2016年   1039篇
  2015年   1751篇
  2014年   1934篇
  2013年   2543篇
  2012年   3217篇
  2011年   3277篇
  2010年   2126篇
  2009年   1903篇
  2008年   2705篇
  2007年   2812篇
  2006年   2742篇
  2005年   2627篇
  2004年   2527篇
  2003年   2399篇
  2002年   2298篇
  2001年   538篇
  2000年   444篇
  1999年   607篇
  1998年   729篇
  1997年   547篇
  1996年   416篇
  1995年   425篇
  1994年   411篇
  1993年   439篇
  1992年   474篇
  1991年   411篇
  1990年   399篇
  1989年   389篇
  1988年   364篇
  1987年   326篇
  1986年   350篇
  1985年   375篇
  1984年   453篇
  1983年   372篇
  1982年   477篇
  1981年   490篇
  1980年   384篇
  1979年   318篇
  1978年   332篇
  1977年   293篇
  1976年   326篇
  1975年   220篇
  1974年   274篇
  1973年   271篇
  1972年   190篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
961.
We report the identification and characterization of ERS-24 (Endoplasmic Reticulum SNARE of 24 kD), a new mammalian v-SNARE implicated in vesicular transport between the ER and the Golgi. ERS24 is incorporated into 20S docking and fusion particles and disassembles from this complex in an ATP-dependent manner. ERS-24 has significant sequence homology to Sec22p, a v-SNARE in Saccharomyces cerevisiae required for transport between the ER and the Golgi. ERS-24 is localized to the ER and to the Golgi, and it is enriched in transport vesicles associated with these organelles.Newly formed transport vesicles have to be selectively targeted to their correct destinations, implying the existence of a set of compartment-specific proteins acting as unique receptor–ligand pairs. Such proteins have now been identified (Söllner et al., 1993a ; Rothman, 1994): one partner efficiently packaged into vesicles, termed a v-SNARE,1 and the other mainly localized to the target compartment, a t-SNARE. Cognate pairs of v- and t-SNAREs, capable of binding each other specifically, have been identified for the ER–Golgi transport step (Lian and Ferro-Novick, 1993; Søgaard et al., 1994), the Golgi–plasma membrane transport step (Aalto et al., 1993; Protopopov et al., 1993; Brennwald et al., 1994) in Saccharomyces cerevisiae, and regulated exocytosis in neuronal synapses (Söllner et al., 1993a ; for reviews see Scheller, 1995; Südhof, 1995). Additional components, like p115, rab proteins, and sec1 proteins, appear to regulate vesicle docking by controlling the assembly of SNARE complexes (Søgaard et al., 1994; Lian et al., 1994; Sapperstein et al., 1996; Hata et al., 1993; Pevsner et al., 1994).In contrast with vesicle docking, which requires compartment-specific components, the fusion of the two lipid bilayers uses a more general machinery derived, at least in part, from the cytosol (Rothman, 1994), which includes an ATPase, the N-ethylmaleimide–sensitive fusion protein (NSF) (Block et al., 1988; Malhotra et al., 1988), and soluble NSF attachment proteins (SNAPs) (Clary et al., 1990; Clary and Rothman, 1990; Whiteheart et al., 1993). Only the assembled v–t-SNARE complex provides high affinity sites for the consecutive binding of three SNAPs (Söllner et al., 1993b ; Hayashi et al., 1995) and NSF. When NSF is inactivated in vivo, v–t-SNARE complexes accumulate, confirming that NSF is needed for fusion after stable docking (Søgaard et al., 1994).The complex of SNAREs, SNAPs, and NSF can be isolated from detergent extracts of cellular membranes in the presence of ATPγS, or in the presence of ATP but in the absence of Mg2+, and sediments at ∼20 Svedberg (20S particle) (Wilson et al., 1992). In the presence of MgATP, the ATPase of NSF disassembles the v–t-SNARE complex and also releases SNAPs. It seems likely that this step somehow initiates fusion.To better understand vesicle flow patterns within cells, it is clearly of interest to identify new SNARE proteins. Presently, the most complete inventory is in yeast, but immunolocalization is difficult in yeast compared with animal cells, and many steps in protein transport have been reconstituted in animal extracts (Rothman, 1992) that have not yet been developed in yeast. Therefore, it is important to create an inventory of SNARE proteins in animal cells. The most unambiguous and direct method for isolating new SNAREs is to exploit their ability to assemble together with SNAPs and NSF into 20S particles and to disassemble into subunits when NSF hydrolyzes ATP. Similar approaches have already been successfully used to isolate new SNAREs implicated in ER to Golgi (Søgaard et al., 1994) and intra-Golgi transport (Nagahama et al., 1996), in addition to the original discovery of SNAREs in the context of neurotransmission (Söllner et al., 1993a ).Using this method, we now report the isolation and detailed characterization of ERS-24 (Endoplasmic Reticulum SNARE of 24 kD), a new mammalian v-SNARE that is localized to the ER and Golgi. ERS-24 is found in transport vesicles associated with the transitional areas of the ER and with the rims of Golgi cisternae, suggesting a role for ERS-24 in vesicular transport between these two compartments.  相似文献   
962.
Connexins are gap junction proteins that form aqueous channels to interconnect adjacent cells. Rat osteoblasts express connexin43 (Cx43), which forms functional gap junctions at the cell surface. We have found that ROS 17/2.8 osteosarcoma cells, UMR 106-01 osteosarcoma cells, and primary rat calvarial osteoblastic cells also express another gap junction protein, Cx46. Cx46 is a major component of plasma membrane gap junctions in lens. In contrast, Cx46 expressed by osteoblastic cells was predominantly localized to an intracellular perinuclear compartment, which appeared to be an aspect of the TGN as determined by immunofluorescence colocalization. Hela cells transfected with rat Cx46 cDNA (Hela/Cx46) assembled Cx46 into functional gap junction channels at the cell surface. Both rat lens and Hela/Cx46 cells expressed 53-kD (nonphosphorylated) and 68-kD (phosphorylated) forms of Cx46; however, only the 53-kD form was produced by osteoblasts. To examine connexin assembly, monomers were resolved from oligomers by sucrose gradient velocity sedimentation analysis of 1% Triton X-100–solubilized extracts. While Cx43 was assembled into multimeric complexes, ROS cells contained only the monomer form of Cx46. In contrast, Cx46 expressed by rat lens and Hela/Cx46 cells was assembled into multimers. These studies suggest that assembly and cell surface expression of two closely related connexins were differentially regulated in the same cell. Furthermore, oligomerization may be required for connexin transport from the TGN to the cell surface.  相似文献   
963.
Two cDNAs, GluClα and GluClβ, encoding glutamate-gated chloride channel subunits that represent targets of the avermectin class of antiparasitic compounds, have recently been cloned from Caenorhabditis elegans (Cully et al., Nature, 371, 707–711, 1994). Expression studies in Xenopus oocytes showed that GluClα and GluClβ have pharmacological profiles distinct from the glutamate-gated cation channels as well as the γ-aminobutyric acid (GABA)- and glycine-gated chloride channels. Establishing the evolutionary relationship of related proteins can clarify properties and lead to predictions about their structure and function. We have cloned and determined the nucleotide sequence of the GluClα and GluClβ genes. In an attempt to understand the evolutionary relationship of these channels with the members of the ligand-gated ion channel superfamily, we have performed gene structure comparisons and phylogenetic analyses of their nucleotide and predicted amino acid sequences. Gene structure comparisons reveal the presence of several intron positions that are not found in the ligand-gated ion channel superfamily, outlining their distinct evolutionary position. Phylogenetic analyses indicate that GluClα and GluClβ form a monophyletic subbranch in the ligand-gated ion channel superfamily and are related to vertebrate glycine channels/receptors. Glutamate-gated chloride channels, with electrophysiological properties similar to GluClα and GluClβ, have been described in insects and crustaceans, suggesting that the glutamate-gated chloride channel family may be conserved in other invertebrate species. The gene structure and phylogenetic analyses in combination with the distinct pharmacological properties demonstrate that GluClα and GluClβ belong to a discrete ligand-gated ion channel family that may represent genes orthologous to the vertebrate glycine channels. Received: 30 September 1996 / Accepted: 15 November 1996  相似文献   
964.
Abstract: The Pulsinelli-Brierley four-vessel occlusion model was used to study the consequences of hyperglycemic ischemia and reperfusion. Rats were subjected to either 30 min of normo- or hyperglycemic ischemia or 30 min of normo- or hyperglycemic ischemia followed by 60 min of reperfusion. In some animals, 2 mg/kg BN 50739, a platelet-activating factor receptor antagonist, was administered intraarterially either before or after the ischemic insult. The changes in mitochondrial membrane free fatty acid levels, phosphatidylcholine fatty acyl composition, and thiobarbituric acid-reactive material (TBAR) content plus the mitochondrial respiratory control ratio (RCR) were monitored. When the platelet-activating factor antagonist was present during normoglycemia, (a) the mitochondrial free fatty acid release both during and after ischemia was slowed, (b) reacylation of phosphatidylcholine following ischemia was promoted, and (c) TBAR accumulation during and following ischemia was decreased. The detrimental effects of hyperglycemia were muted when BN 50739 was present during ischemia. The RCR was preserved and phosphatidylcholine hydrolysis during ischemia was decreased. TBAR levels were consistently higher in hyperglycemic brain mitochondria both during and after ischemia. The RCR correlated directly with mitochondrial phosphatidylcholine polyunsaturated fatty acid content during ischemia and reperfusion. BN 50739 protection of mitochondrial membranes in brain may be influenced by tissue pH.  相似文献   
965.
Abstract: We have examined the mechanisms that underlie Ca2+ wave propagation in cultured cortical astrocytes. Norepinephrine evoked Ca2+ waves in astrocytes that began at discrete initiation loci and propagated throughout the cell by regenerative amplification at a number of cellular sites, as shown by very high Ca2+ release rates at these regions. We have hypothesized previously that domains displaying elevated Ca2+ release kinetics in astrocytes may correspond to sites of high inositol 1,4,5-trisphosphate receptor (InsP3R) density. To examine this possibility, we compared the distribution pattern of endoplasmic reticulum (ER) and InsP3Rs with Ca2+ release kinetics in subcellular regions during propagation of norepinephrine-evoked waves. 3,3'-Dihexyloxacarbocyanine iodide staining revealed that the ER in astrocytes exists as a meshwork of membranes extending throughout the cells, including fine processes. A specific antibody directed against type 2 InsP3Rs (InsP3R2) detected a 260-kDa band in western blotting of astrocyte membranes. Immunocytochemistry using this antibody stained the entire ER system in a punctate, variegated manner. When Ca2+ responses and InsP3R2 immunofluorescence were compared in the same cell, domains of elevated Ca2+ response kinetics (high amplitude and rapid rate of rise) showed significant positive correlation with high local intensity of InsP3R2 staining. It appears, therefore, that specializations in the ER responsible for discrete local Ca2+ release sites that support regenerative wave propagation include increased levels of InsP3R2 expression.  相似文献   
966.
Abstract: Gangliosides are implicated in the regulation of cellular proliferation as evidenced by differences in ganglioside composition associated with malignant transformation and density of cells in culture, as well as their inhibitory effects when added to cells growing in culture. Exogenously added gangliosides have a bimodal effect on proliferation in U-1242 MG glioma cells, inhibiting DNA synthesis in growing cells and stimulating it in quiescent cells. We investigated the mechanisms involved in stimulation of DNA synthesis using [3H]thymidine incorporation and immune complex kinase assays to identify responsible signal transduction pathways. Treatment of quiescent U-1242 MG cells with GM1 caused activation of the mitogen-activated protein (MAP) kinase isoform Erk2. Pretreatment with the specific MAP kinase kinase inhibitor PD98059 prevented the GM1-stimulated Erk2 activation and GM1-stimulated DNA synthesis. GM1 treatment stimulated another distinct signaling pathway leading to activation of p70 S6 kinase (p70s6k), and this was prevented by pretreatment with rapamycin. Rapamycin also inhibited GM1-stimulated DNA synthesis. Activation of both pathways and stimulation of DNA synthesis were inhibited by forskolin treatment; however, GM1 had no effect on cyclic AMP levels. Platelet-derived growth factor also activated both Erk2 and p70s6k but did not cause DNA synthesis, suggesting that GM1 may stimulate additional cascades, which also contribute to GM1-mediated DNA synthesis.  相似文献   
967.
Abstract: The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-γ (PLC-γ). A glutathione S -transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-γ was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-γ and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.  相似文献   
968.
Abstract: Activation of the N -methyl- d -aspartate (NMDA) receptor has been implicated in the events leading to ischemia-induced neuronal cell death. Recent studies have indicated that the properties of the NMDA receptor channel may be regulated by tyrosine phosphorylation. We have therefore examined the effects of transient cerebral ischemia on the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in different regions of the rat brain. Transient (15 min) global ischemia was produced by the four-vessel occlusion procedure. The tyrosine phosphorylation of NR2A and NR2B subunits was examined by immunoprecipitation with anti-tyrosine phosphate antibodies followed by immunoblotting with antibodies specific for NR2A or NR2B, and by immunoprecipitation with subunit-specific antibodies followed by immunoblotting with anti-phosphotyrosine antibodies. Transient ischemia followed by reperfusion induced large (23–29-fold relative to sham-operated controls), rapid (within 15 min of reperfusion), and sustained (for at least 24 h) increases in the tyrosine phosphorylation of NR2A and smaller increases in that of NR2B in the hippocampus. Ischemia-induced tyrosine phosphorylation of NR2 subunits in the hippocampus was higher than that of cortical and striatal NR2 subunits. The enhanced tyrosine phosphorylation of NR2A or NR2B may contribute to alterations in NMDA receptor function or in signaling pathways in the postischemic brain and may be related to pathogenic events leading to neuronal death.  相似文献   
969.
Weight loss and wrestling training: effects on growth-related hormones   总被引:3,自引:0,他引:3  
Roemmich, James N., and Wayne E. Sinning. Weight lossand wrestling training: effects on growth-related hormones.J. Appl. Physiol. 82(6):1760-1764, 1997.Adolescent wrestlers(n = 9, 15.4 yr) and recreationallyactive control males (n = 7, 15.7 yr)were measured before, at the end of, and 3.5-4 mo after acompetitive wrestling season to assess the influence of dietary restriction on growth-related hormones. Wrestlers had significant elevations preseason to late season for morning serum concentrations (mean of 8 serial samples) of growth hormone (GH; 2.9 ± 0.7 vs. 6.5 ± 1.4 ng/ml) and sex hormone-binding globulin (SHBG; 16.1 ± 2.3 vs. 27.9 ± 6.9 nmol/l) and significant reductions in GH-binding protein (GHBP; 178 ± 19 vs. 109 ± 17 pmol/l), insulin-likegrowth factor I (IGF-I; 332 ± 30 vs. 267 ± 34 ng/ml),testosterone (T; 4.9 ± 0.4 vs. 3.6 ± 0.4 ng/ml), and freetestosterone (Free-T; 22.4 ± 3.6 vs. 15.7 ± 2.8 pg/ml).Wrestlers had significant postseason reductions in GH (3.44 ± 1.30 ng/ml) and SHBG (10.43 ± 4.13 nmol/l) but elevationsin GHBP (66.7 ± 23.8 pmol/l), IGF-I (72.9 ± 25.1 ng/ml),T (2.10 ± 0.46 ng/ml), and Free-T (9.76 ± 3.01 pg/ml). Concentrations of luteinizing hormone (LH), estradiol,prolactin, cortisol, insulin, and thyroid hormones did not differbecause of exercise-dietary practices of wrestlers. In-seasonelevations in GH, with concomitant reductions in GHBP and IGF-I, thatwere reversed during the postseason suggest a reduction in GH receptor number and partial GH resistance during the season. Nonelevated LH withreduced T levels suggests a central hypothalamic-pituitary-gonadal (H-P-G) axis impairment. In conclusion, undernutrition may lead toaltered H-P-G and GH-IGF-I axes function in adolescent wrestlers. However, only the wrestlers' late-season Free-T concentrations wereoutside the normal range, and the hormone axis impairments were quicklyreversed. The present data do not address hormonal axis responses toseveral years of wrestling and weight loss.

  相似文献   
970.
Hennessey, James V., Joseph A. Chromiak, ShirleyDellaVentura, Jennifer Guertin, and David B. MacLean. Increasein percutaneous muscle biopsy yield with a suction-enhancementtechnique. J. Appl. Physiol. 82(6):1739-1742, 1997.The percutaneous muscle biopsy technique is usedin clinical practice and biomedical research. We developed a newenhanced-suction technique [suction-enhancing nipples(SEN)] and compared it with techniques currently in practice byassessing biopsy yields on anesthetized pigs. We applied the enhanced-suction technique to human subjects participating in aclinical trial. In the pig, there was a mean 91% (1.9-fold) increasein the size of the samples obtained with the 4-mm needle when SEN wasused and a mean 507% (fivefold) increase in sample size when the SENwas applied to the 6-mm needles. Nine passes of the 6-mm needle withSEN obtained from five consecutive human subjects yielded a meanindividual sample size of 109.4 mg or 219.4 mg per needle pass whenusing the double-sample technique. Adequate tissue samples forhistomorphometric and other analyses were obtained in all samplesobtained. The percutaneous muscle biopsy performed with enhancedsuction using inexpensive, readily available nipples enhances tissueyield two- to fivefold.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号