首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   12篇
  2022年   4篇
  2021年   11篇
  2020年   5篇
  2019年   5篇
  2018年   11篇
  2017年   13篇
  2016年   11篇
  2015年   11篇
  2014年   13篇
  2013年   22篇
  2012年   27篇
  2011年   31篇
  2010年   17篇
  2009年   20篇
  2008年   21篇
  2007年   11篇
  2006年   4篇
  2005年   11篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有295条查询结果,搜索用时 500 毫秒
231.
A series of steroid-polyamine conjugates were synthesized and evaluated for their antimicrobial activity. This study was focused on the effect of stereochemistry at the C-3 and C-5 of steroids and types of polyamine at C-3 on activity against various human pathogens. All the conjugates exhibited strong antimicrobial activities against Gram-positive strains. Compound 18 was found to be the most potent in these series with a MIC value as low as 1 μg/mL against the bacterium Staphylococcus aureus ATCC6538P.  相似文献   
232.
The synthesis and biological evaluation of novel pyrazole-3-carboxamide derivatives as CB1 antagonists are described. As a part of eastern amide SAR, various chemically diverse motifs were introduced. In general, a range of modifications were well tolerated. Several molecules with high polar surface area were also identified as potent CB1 receptor antagonists. The in vivo proof of principle for weight loss is exemplified with a lead compound from this series.  相似文献   
233.
Aryl alcohol oxidase (AAO) produced by dye decolorizing bacteria Sphingobacterium sp. ATM, was purified 22.63 fold to a specific activity of 21.75 μmol/min/mg protein using anion exchange and size exclusion chromatography. The molecular weight of the purified AAO was found to be 71 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and confirmed by zymography of AAO using L-dopa. The enzyme showed substrate specificity towards veratryl alcohol, followed by n-propanol. The optimum pH and temperature of purified AAO were found to be 3.0 and 40°C, respectively. The K m and V max of AAO was 1.1615 mM and 3.13 mM/min when veratryl alcohol was used as substrate. Sodium azide showed maximum inhibition while ethylenediamine tetra acetic acid (EDTA), L-cysteine and dithiothreitol showed slight inhibition. Metal ions also showed slight inhibition. HPLC analysis confirmed the degradation of Direct Red 5B. The metabolite obtained after decolorization of Direct Red 5B was characterized as 3 diazenyl 7 [-(phenyl carbonyl) amino] naphthalene-2-sulfonic acid using GC-MS analysis.  相似文献   
234.
l-DOPA (3,4-dihydroxyphenyl-l-alanine) is the most widely used drug for treatment of Parkinson’s disease. In this study Yarrowia lipolytica-NCIM 3472 biomass was used for transformation of l-tyrosine to l-DOPA. The process parameters were optimized using response surface methodology (RSM). The optimum values of the tested variables for the production of l-DOPA were: pH 7.31, temperature 42.9 °C, 2.31 g l?1 cell mass and 1.488 g l?1 l-tyrosine. The highest yield obtained with these optimum parameters along with recycling of the cells was 4.091 g l?1. This optimization of process parameters using RSM resulted in 4.609-fold increase in the l-DOPA production. The statistical analysis showed that the model was significant. Also coefficient of determination (R2) was 0.9758, indicating a good agreement between the experimental and predicted values of l-DOPA production. The highest tyrosinase activity observed was 7,028 U mg?1 tyrosine. l-DOPA production was confirmed by HPTLC and HPLC analysis. Thus, RSM approach effectively enhanced the potential of Y. lipolytica-NCIM 3472 as an alternative source to produce l-DOPA.  相似文献   
235.
Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4?>?lipid1?>?lipid2?>?lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (?Gbinding?=??2.17 and ?11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation ability, drug release and further development of novel liposome-based pH-responsive nano-drug delivery system with refined structural and chemical features of potential lipid molecule for formulation development.  相似文献   
236.
Genus Chlorophytum Ker Gawl secures its position chiefly as commercial plants with a wide range of applications, right from pharmaceutical to ornamental, and with a promising economical return also. Few species of this genus are now enlisted under “threatened plant category” due to rash harvesting from its wild habitat, as it is utilized extensively in various industries. Great challenges are associated with its conventional propagation approach. The accomplishment and rapidity in the propagation of few species of Chlorophytum have constantly been a key concern for farmers and researchers. In this regard, in vitro propagation is an efficient technique to triumph over regeneration-associated problems. Available literature was surveyed rigorously to extract the information on pharmacological utilities and recent advancements in in vitro regeneration of genus Chlorophytum. Since 1990s to till now, a number of efforts were made in different aspects of Chlorophytum under both in vitro and ex vitro conditions. Current review intends to provide a comprehensive overview of important properties and biotechnological aspects, viz. bioactive constituents and inherent properties of such as aphrodisiac potential, anti-diabetic, anti-microbial, anti-tumor and anti-oxidant, and in vitro production of genus Chlorophytum. Conclusively, proposed article is an attempt to provide overall update of various studies conducted with members of Chlorophytum genus that will possibly be helpful in proper, fullest and sustainable utilization of this important group.  相似文献   
237.
The endoplasmic reticulum (ER) is involved in Ca2+ signaling and protein folding. ER Ca2+ depletion and accumulation of unfolded proteins activate the molecular chaperone GRP78 (glucose-regulated protein 78) which in turn triggers the ER stress response (ERSR) pathway aimed to restore ER homeostasis. Failure to adapt to stress, however, results in apoptosis. We and others have shown that malignant cells are more susceptible to ERSR-induced apoptosis than their normal counterparts, implicating the ERSR as a potential target for cancer therapeutics. Predicated on these findings, we developed an assay that uses a GRP78 biosensor to identify small molecule activators of ERSR in glioma cells. We performed a quantitative high-throughput screen (qHTS) against a collection of ~425,000 compounds and a comprehensive panel of orthogonal secondary assays was formulated for stringent compound validation. We identified novel activators of ERSR, including a compound with a 2,9-diazaspiro[5.5]undecane core, which depletes intracellular Ca2+ stores and induces apoptosis-mediated cell death in several cancer cell lines, including patient-derived and 3D cultures of glioma cells. This study demonstrates that our screening platform enables the identification and profiling of ERSR inducers with cytotoxic activity and advocates for characterization of these compound in in vivo models.  相似文献   
238.
The most striking characteristic of CHO cells is their adaptability, which enables efficient production of proteins as well as growth under a variety of culture conditions, but also results in genomic and phenotypic instability. To investigate the relative contribution of genomic and epigenetic modifications towards phenotype evolution, comprehensive genome and epigenome data are presented for six related CHO cell lines, both in response to perturbations (different culture conditions and media as well as selection of a specific phenotype with increased transient productivity) and in steady state (prolonged time in culture under constant conditions). Clear transitions were observed in DNA‐methylation patterns upon each perturbation, while few changes occurred over time under constant conditions. Only minor DNA‐methylation changes were observed between exponential and stationary growth phase; however, throughout a batch culture the histone modification pattern underwent continuous adaptation. Variation in genome sequence between the six cell lines on the level of SNPs, InDels, and structural variants is high, both upon perturbation and under constant conditions over time. The here presented comprehensive resource may open the door to improved control and manipulation of gene expression during industrial bioprocesses based on epigenetic mechanisms. Biotechnol. Bioeng. 2016;113: 2241–2253. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   
239.
In the present work, an attempt has been made to screen Prosopis africana seed gum (PG), anionic polymer for extended release tablet formulation. Different categories of drugs (charge basis) like diclofenac sodium (DS), chlorpheniramine maleate (CPM), and ibuprofen (IB) were compacted with PG and compared with different polymers (charge basis) like xanthan gum (XG), hydroxypropyl methyl cellulose (HPMC-K100M), and chitosan (CP). For each drug, 12 batches of tablets were prepared by wet granulation technique, and granules were evaluated for flow properties, compressibility, and compactibility by Heckel and Leuenberger analysis, swelling index, in vitro dissolution studies, etc. It has been observed that granules of all batches showed acceptable flowability. According to Heckel and Leuenberger analysis, granules of PG-containing compacts showed similar and satisfactory compressibility and compactibility compared to granules of other polymers. PG showed significant swelling (P < 0.05) compared to HPMC, and better than CP and XG. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) study showed no interaction between drugs and polymers. From all PG-containing compacts of aforesaid drugs, drug release was sustained for 12 h following anomalous transport. Especially, polyelectrolyte complex formation retarded the release of oppositely charged drug (CPM-PG). However, extended release was noted in both anionic (DS) and nonionic (IB) drugs, maybe due to swollen gel. All compacts were found to be stable for 3-month period during stability study. This concludes that swelling and release retardation of PG has close resemblance to HPMC, so it can be used as extended release polymer for all types of drugs.KEY WORDS: chlorpheniramine maleate, diclofenac sodium, extended release, ibuprofen, Prosopis africana  相似文献   
240.
Pseudomonas desmolyticum NCIM 2112 was able to degrade a diazo dye Direct Blue-6 (100 mg l(-1)) completely within 72 h of incubation with 88.95% reduction in COD in static anoxic condition. Induction in the activity of oxidative enzymes (LiP, laccase) and tyrosinase while decolorization in the batch culture represents their role in degradation. Dye also induced the activity of aminopyrine N-demethylase, one of the enzyme of mixed function oxidase system. The biodegradation was monitored by UV-Vis, IR spectroscopy and HPLC. The final products, 4-amino naphthalene and amino naphthalene sulfonic acid were characterized by GC-mass spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号