首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567篇
  免费   53篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   7篇
  2019年   10篇
  2018年   3篇
  2017年   14篇
  2016年   12篇
  2015年   25篇
  2014年   22篇
  2013年   36篇
  2012年   55篇
  2011年   40篇
  2010年   26篇
  2009年   28篇
  2008年   28篇
  2007年   48篇
  2006年   36篇
  2005年   37篇
  2004年   30篇
  2003年   36篇
  2002年   44篇
  2001年   6篇
  2000年   7篇
  1999年   8篇
  1998年   7篇
  1997年   9篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有620条查询结果,搜索用时 171 毫秒
11.
LSH, a SNF2 family DNA helicase, is a key regulator of DNA methylation in mammals. How LSH facilitates DNA methylation is not well defined. While previous studies with mouse embryonic stem cells (mESc) and fibroblasts (MEFs) derived from Lsh knockout mice have revealed a role of Lsh in de novo DNA methylation by Dnmt3a/3b, here we report that LSH contributes to DNA methylation in various cell lines primarily by promoting DNA methylation by DNMT1. We show that loss of LSH has a much bigger effect in DNA methylation than loss of DNMT3A and DNMT3B. Mechanistically, we demonstrate that LSH interacts with UHRF1 but not DNMT1 and facilitates UHRF1 chromatin association and UHRF1-catalyzed histone H3 ubiquitination in an ATPase activity-dependent manner, which in turn promotes DNMT1 recruitment to replication fork and DNA methylation. Notably, UHRF1 also enhances LSH association with the replication fork. Thus, our study identifies LSH as an essential factor for DNA methylation by DNMT1 and provides novel insight into how a feed-forward loop between LSH and UHRF1 facilitates DNMT1-mediated maintenance of DNA methylation in chromatin.  相似文献   
12.
Calcareous nannofossil diversity, and rates of speciation and extinction are calculated for five million year intervals from their first appearance in the Late Triassic through to the Present Day. Important evolutionary events are as follows: first appearance in the Late Triassic, Triassic‐Jurassic boundary extinctions, Tithonian radiation (and the first occurrence of nannofossil carbonates), Late Cretaceous diversity maximum, Cretaceous‐Tertiary boundary extinctions, Palaeocene radiation, mid Eocene to Oligocene diversity decline, and early Miocene diversity rise. These events are related to possible causal factors of which climate appears to be the most fundamental. Other factors may include biogeographical isolation, sea level change, and the configuration of Mesozoic oceans.  相似文献   
13.
The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography–mass spectrometry analysis of peptide–lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH 7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3 h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins.  相似文献   
14.
The study of the morphological defects unique to interspecific hybrids can reveal which developmental pathways have diverged between species. Drosophila melanogaster and D. santomea diverged more than 10 million years ago, and when crossed produce sterile adult females. Adult hybrid males are absent from all interspecific crosses. We aimed to determine the fate of these hybrid males. To do so, we tracked the development of hybrid females and males using classic genetic markers and techniques. We found that hybrid males die predominantly as embryos with severe segment‐specification defects while a large proportion of hybrid females embryos hatch and survive to adulthood. In particular, we show that most male embryos show a characteristic abdominal ablation phenotype, not observed in either parental species. This suggests that sex‐specific embryonic developmental defects eliminate hybrid males in this interspecific cross. The study of the developmental abnormalities that occur in hybrids can lead to the understanding of cryptic molecular divergence between species sharing a conserved body plan.  相似文献   
15.
16.
17.
Climate change and competition from invasive species remain two important challenges in restoration. We examined the hypothesis that non‐native tamarisk (Tamarix spp.) reestablishment after aboveground removal is affected by genetics‐based architecture of native Fremont cottonwood (Populus fremontii) used in restoration. As cottonwood architecture (height, canopy width, number of stems, and trunk diameter) is, in part, determined by genetics, we predicted that trees from different provenances would exhibit different architecture, and mean annual maximum temperature transfer distance from the provenances would interact with the architecture to affect tamarisk. In a common garden in Chevelon, AZ, U.S.A. (elevation 1,496 m), with cottonwoods from provenances spanning its elevation distribution, we measured the performance of both cottonwoods and tamarisk. Several key findings emerged. On average, cottonwoods from higher elevations were (1) two times taller and wider, covered approximately 3.5 times more basal area, and were less shrubby in appearance, by exhibiting four times fewer number of stems than cottonwoods from lower elevations; (2) had 50% fewer tamarisk growing underneath, which were two times shorter and covered 6.5 times less basal area than tamarisk growing underneath cottonwoods of smaller stature; and (3) the number of cottonwood stems did not affect tamarisk growth, possibly because the negative relationship between cottonwood stems and basal area. In combination, these findings argue that cottonwood architecture is affected by local conditions that interact with genetics‐based architecture. These interactions can negatively affect the growth of reinvading tamarisk and enhance restoration success. Our study emphasizes the importance of incorporating genetic and environmental interactions of plants used in restoration.  相似文献   
18.
Understanding the ephemerality of trees used as roosts by wildlife, and the number of roost trees needed to sustain their populations, is important for forest management and wildlife conservation. Several studies indicate that roosts are limiting to bats, but few studies have monitored longevity of roost trees used by bats over several years. From 2004–2007 in Cypress Hills Interprovincial Park, Saskatchewan, Canada, several big brown bats (Eptesicus fuscus) from a maternity group roosted in cavities in trembling aspen (Populus tremuloides) trees approximately 7 km southeast away from their original known roosting area (RA1). Using a long-term data set of the roost trees used by bats in this area from 2000–2007, we evaluated whether the movement of bats to the new roosting area (RA4) corresponded with annual and cumulative losses of roost trees. We also determined whether longevity of the roosts from the time we discovered bats first using them differed between the 2 roosting areas based on Kaplan-Meier estimates. Bats began using RA4 in addition to RA1 in 2004, when the cumulative loss of roost trees in RA1 over 3 consecutive years reached 18%. Most bats exclusively roosted in RA4 in 2007, when the cumulative loss of roost trees over 6 consecutive years had reached 46% in RA1. Annual survival for roost trees, from when we first discovered bats using them, was generally lower in RA1 than in RA4. Our results suggest that the movement of bats to the new roosting area corresponded with high losses of roost trees in RA1. This provides additional evidence that to maintain high densities of suitable roost trees for bats in northern temperature forests over several decades, management plans need to recruit live and dead trees in multiple age classes and stages of decay that will be suitable for the formation of new cavities. © 2019 The Wildlife Society.  相似文献   
19.
Epidermal stem cells: interactions in developmental environments   总被引:8,自引:0,他引:8  
Homeostasis of continuously renewing adult tissues, such as the epidermis of the skin, is maintained by epidermal stem cells (EpiSC), which are a small population of undifferentiated, self-renewing basal keratinocyte cells that produce daughter transit amplifying (TA) cells to make up the majority of the proliferative basal cell population in the epidermis. We have isolated EpiSC from neonatal and adult skin, and shown that these cells can regenerate an epidermis that lasts long term in vitro and in vivo, and that permanently expresses a recombinant gene in the regenerated tissue (Bickenbach and Dunnwald, 2000; Dunnwald et al., 2001). When we injected murine EpiSC into the developing blastocyst environment of the mouse, we found that both neonatal and adult EpiSC retained some ability to participate in the formation of tissues from all three germ layers (Liang and Bickenbach, 2002; Bickenbach and Chinnathambi, 2004; Liang et al., 2004). Although it appears evident that EpiSC act as pluripotent stem cells, how this reprogramming takes place is not understood. EpiSC might directly transdifferentiate into other cell types or they might first dedifferentiate into a more primitive cell type, and then proceed to develop along a cell lineage pathway. To begin to unravel this, we co-cultured EpiSC with embryonic stem (ES) cells, and found that EpiSC could alter their cell lineage protein expression to that of a more primitive cell type. We also placed EpiSC in a wounded environment and found that EpiSC interacted with the mesenchymal cells repopulating the wound bed. Our findings indicate that the population of cells that we isolate as EpiSC has a pluripotent capability. This has led us to postulate a paradigm shift for somatic stem cells. We propose that tissues maintain a sequestered population of uncommitted stem cells that retain a regenerative response which is enhanced when the cells are exposed to developmental or stress influences.  相似文献   
20.
It has been shown that rat aortic smooth muscle cells (AoSMCs) lost PKG-I expression when propagated repetitively or grown at low densities. Conversely, AoSMCs isolated from PKG-I deficient mice are indistinguishable from those isolated from normal mice in morphology and growth characteristics. In this study, human AoSMCs were grown from passage 9 (p9) to passage 15 (p15) and rat AoSMCs were isolated and cultured from p1 through p15. Western blotting and immunofluorescence microscopy showed little difference in PKG-I expression among different passages. Next, rat AoSMCs of p4 were grown and harvested at different cell densities. Western blotting again showed little difference among cells seeded or harvested at different densities. To test the effect of cell passage on PKG-I activation, rat AoSMCs of p4 and p11 were treated with cGMP and analyzed by Western blotting for phosphorylated vasodilator-stimulated phosphoprotein (P-VASP). The results showed that p4 had higher level of PKG-I activation than p11.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号