首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   13篇
  国内免费   1篇
  2022年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   8篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   7篇
  2006年   8篇
  2005年   7篇
  2004年   7篇
  2003年   10篇
  2002年   7篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1990年   3篇
排序方式: 共有116条查询结果,搜索用时 531 毫秒
51.
Retrospective studies clearly indicate that mobile genetic elements (MGEs) play a major role in the in situ spread and even de novo construction of catabolic pathways in bacteria, allowing bacterial communities to rapidly adapt to new xenobiotics. The construction of novel pathways seems to occur by an assembly process that involves horizontal gene transfer: different appropriate genes or gene modules that encode different parts of the novel pathway are recruited from phylogenetically related or distant hosts into one single host. Direct evidence for the importance of catabolic MGEs in bacterial adaptation to xenobiotics stems from observed correlations between catabolic gene transfer and accelerated biodegradation in several habitats and from studies that monitor catabolic MGEs in polluted sites.  相似文献   
52.
Aims: To establish the fate of Escherichia coli O157:H7 and Salmonella Typhimurium in manure and manure‐amended agricultural soils under tropical conditions in Sub‐Saharan Africa. Methods and Results: Survival of nonvirulent Ecoli O157:H7 and Salm. Typhimurium at 4 and 7 log CFU g?1 in manure and manure‐amended soil maintained at ≥80% r.h. or exposed to exclusive field or screen house conditions was determined in the Central Agro‐Ecological Zone of Uganda. Maintaining the matrices at high moisture level promoted the persistence of high‐density inocula and enhanced the decline of low‐density inocula in the screen house, but moisture condition did not affect survival in the field. The large majority of the survival kinetics displayed complex patterns corresponding to the Double Weibull model. The two enteric bacteria survived longer in manure‐amended soil than in manure. The 7 log CFU g?1Ecoli O157:H7 and Salm. Typhimurium survived for 49–84 and 63–98 days, while at 4 log CFU g?1, persistence was 21–28 and 35–42 days, respectively. Conclusions: Under tropical conditions, Ecoli O157:H7 and Salm. Typhimurium persisted for 4 and 6 weeks at low inoculum density and for 12 and 14 weeks at high inoculum density, respectively. Significance and Impact of the Study: Persistence in the tropics was (i) mostly shorter than previously observed in temperate regions thus suggesting that biophysical conditions in the tropics might be more detrimental to enteric bacteria than in temperate environments; (ii) inconsistent with published data isothermally determined previously hence indicating the irrelevance of single point isothermal data to estimate survival under dynamic temperature conditions.  相似文献   
53.
Bacterial strains of the genus Sphingomonas are often isolated from contaminated soils for their ability to use polycyclic aromatic hydrocarbons (PAH) as the sole source of carbon and energy. The direct detection of Sphingomonas strains in contaminated soils, either indigenous or inoculated, is, as such, of interest for bioremediation purposes. In this study, a culture-independent PCR-based detection method using specific primers targeting the Sphingomonas 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) was developed to assess Sphingomonas diversity in PAH-contaminated soils. PCR using the new primer pair on a set of template DNAs of different bacterial genera showed that the method was selective for bacteria belonging to the family Sphingomonadaceae. Single-band DGGE profiles were obtained for most Sphingomonas strains tested. Strains belonging to the same species had identical DGGE fingerprints, and in most cases, these fingerprints were typical for one species. Inoculated strains could be detected at a cell concentration of 104 CFU g of soil−1. The analysis of Sphingomonas population structures of several PAH-contaminated soils by the new PCR-DGGE method revealed that soils containing the highest phenanthrene concentrations showed the lowest Sphingomonas diversity. Sequence analysis of cloned PCR products amplified from soil DNA revealed new 16S rRNA gene Sphingomonas sequences significantly different from sequences from known cultivated isolates (i.e., sequences from environmental clones grouped phylogenetically with other environmental clone sequences available on the web and that possibly originated from several potential new species). In conclusion, the newly designed Sphingomonas-specific PCR-DGGE detection technique successfully analyzed the Sphingomonas communities from polluted soils at the species level and revealed different Sphingomonas members not previously detected by culture-dependent detection techniques.  相似文献   
54.
Members of the genus Dehalococcoides are well-known for their capacity to reductively dechlorinate chlorinated organic pollutants. The availability of quantitative and sensitive detection methods is of major interest for research on the ecology of those environmentally important micro-organisms. In this paper we describe the development of a Catalyzed Reporter Deposition-Fluorescent In Situ Hybridization (CARD-FISH) for detection of Dehalococcoides cells in enrichment cultures using two oligonucleotide sequences which target two different lineages of Dehalococcoides as probes. Both sequences were previously applied in conventional FISH as probes. Conjugation of the probe to horseradish peroxidase (HRP) did not change the specificity of the probes and bright fluorescent signals were obtained. Despite the use of higher concentrations of probe and the application of longer exposure times in the conventional FISH procedure, CARD-FISH resulted in more intense signals. The CARD-FISH method was applied to a vinyl chloride (VC)-reductively-dechlorinating enrichment culture. Only the probe targeting the CBDB1 lineage of Dehalococcoides reacted with the sample which was in agreement with previous nucleic acid based analysis. The culture consisted of 51%+/-8% of Dehalococcoides cells. Furthermore, the CARD-FISH probes for detecting Dehalococcoides were combined with FISH probes for simultaneous detection of either Bacteria or Archaea which should allow rapid insight into the relative dynamics of the different members of dechlorinating communities as a response to environmental changes. Overall, CARD-FISH proved to be a rapid, reliable and convenient method to detect and quantify Dehalococcoides cells.  相似文献   
55.
Members of a triple-species 3-(3,4-dichlorophenyl)-1-methoxy-1-methyl urea (linuron)-mineralizing consortium, i.e. the linuron- and 3,4-dichloroaniline-degrading Variovorax sp. WDL1, the 3,4-dichloroaniline-degrading Comamonas testosteroni WDL7 and the N,O-dimethylhydroxylamine-degrading Hyphomicrobium sulfonivorans WDL6, were cultivated as mono- or multi-species biofilms in flow cells irrigated with selective or nonselective media, and examined with confocal laser scanning microscopy. In contrast to mono-species biofilms of Variovorax sp. WDL1, the triple-species consortium biofilm degraded linuron completely through apparent synergistic interactions. The triple-species linuron-fed consortium biofilm displayed a heterogeneous structure with an irregular surface topography that most resembled the topography of linuron-fed mono-species WDL1 biofilms, indicating that WDL1 had a dominating influence on the triple-species biofilm architecture. This architecture was dependent on the carbon source supplied, as the biofilm architecture of WDL1 growing on alternative carbon sources was different from that observed under linuron-fed conditions. Linuron-fed triple-species consortium biofilms consisted of mounds composed of closely associated WDL1, WDL7 and WDL6 cells, while this association was lost when the consortium was grown on a nonselective carbon source. In addition, under linuron-fed conditions, microcolonies displaying associated growth developed rapidly after inoculation. These observations indicate that the spatial organization in the linuron-fed consortium biofilm reflected the metabolic interactions within the consortium.  相似文献   
56.
Tn4371, a 55-kb transposable element involved in the degradation and biphenyl or 4-chlorobiphenyl identified in Ralstonia eutropha A5, displays a modular structure including a phage-like integrase gene (int), a Pseudomonas-like (chloro)biphenyl catabolic gene cluster (bph), and RP4- and Ti-plasmid-like transfer genes (trb) (C. Merlin, D. Springael, and A. Toussaint, Plasmid 41:40-54, 1999). Southern blot hybridization was used to examine the presence of different regions of Tn4371 in a collection of (chloro)biphenyl-degrading bacteria originating from different habitats and belonging to different bacterial genera. Tn4371-related sequences were never detected on endogenous plasmids. Although the gene probes containing only bph sequences hybridized to genomic DNA from most strains tested, a limited selection of strains, all beta-proteobacteria, displayed hybridization patterns similar to the Tn4371 bph cluster. Homology between Tn4371 and DNA of two of those strains, originating from the same area as strain A5, extended outside the catabolic genes and covered the putative transfer region of Tn4371. On the other hand, none of the (chloro)biphenyl degraders hybridized with the outer left part of Tn4371 containing the int gene. The bph catabolic determinant of the two strains displaying homology to the Tn4371 transfer genes and a third strain isolated from the A5 area could be mobilized to a R. eutropha recipient, after insertion into an endogenous or introduced IncP1 plasmid. The mobilized DNA of those strains included all Tn4371 homologous sequences previously identified in their genome. Our observations show that the bph genes present on Tn4371 are highly conserved between different (chloro)biphenyl-degrading hosts, isolated globally but belonging mainly to the beta-proteobacteria. On the other hand, Tn4371-related mobile elements carrying bph genes are apparently only found in isolates from the environment that provided the Tn4371-bearing isolate A5.  相似文献   
57.
58.
Mycobacterium sp. strain LB501T utilizes anthracene as a sole carbon and energy source. We analyzed cultures of the wild-type strain and of UV-generated mutants impaired in anthracene utilization for metabolites to determine the anthracene degradation pathway. Identification of metabolites by comparison with authentic standards and transient accumulation of o-phthalic acid by the wild-type strain during growth on anthracene suggest a pathway through o-phthalic acid and protocatechuic acid. As the only productive degradation pathway known so far for anthracene proceeds through 2,3-dihydroxynaphthalene and the naphthalene degradation pathway to form salicylate, this indicates the existence of a novel anthracene catabolic pathway in Mycobacterium sp. LB501T.  相似文献   
59.
The nucleotide sequence of the biphenyl catabolic transposon Tn4371 has been completed and analyzed. It confirmed that the element has a mosaic structure made of several building blocks. In addition to previously identified genes coding for a tyrosine recombinase related to phage integrases and for biphenyl degradation enzymes very similar to those of Achromobacter georgiopolitanum KKS102, Tn4371 carries many plasmid-related genes involved in replication, partition, and other, as-yet-unknown, plasmid functions. One gene cluster contains most of the genes required to express a type IV secretion-mating pair formation apparatus coupled with a TraG ATPase, all of which are related to those found on IncP and Ti plasmids. Orthologues of all Tn4371 plasmid-related genes and of the tyrosine recombinase gene were found, with a very similar organization, in the chromosome of Ralstonia solanacearum and on the yet-to-be-determined genomic sequences of Erwinia chrysanthemi and Azotobacter vinelandii. In each of these chromosomal segments, conserved segments were separated by different groups of genes, which also differed from the Tn4371 bph genes. The conserved blocks of genes were also identified, in at least two copies, in the chromosome of Ralstonia metallidurans CH34. Tn4371 thus appears to represent a new family of potentially mobile genomic islands with a broad host range since they reside in a wide range of soil proteobacteria, including plant pathogens.  相似文献   
60.
Three environmental Mycobacterium strains (LB501T, LB307T and VM552) able to degrade anthracene, phenanthrene or pyrene, respectively, were successfully electroporated with pAL5000-based plasmids containing the green fluorescent protein (gfp) gene of Aequoria victoria under the control of the hsp60 promoter of Mycobacterium bovis following a slightly modified standard procedure. Transformants showed irregular gfp expression profiles. Four plasmid derivatives were constructed that contained gene promoters isolated from, and adapted to, gene expression in polycyclic aromatic hydrocarbon (PAH)-degrading mycobacteria. One derivative directed strong and homogeneous expression of GFP, allowing dual analysis of both GFP- and PAH-derived fluorescence as assessed by confocal laser scanning microscopy. The results reported here demonstrate the suitability of the pAL5000 replicon for the development of recombinant DNA-based studies in PAH-degrading Mycobacterium spp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号