首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   9篇
  国内免费   18篇
  2023年   3篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   14篇
  2013年   16篇
  2012年   22篇
  2011年   20篇
  2010年   14篇
  2009年   21篇
  2008年   13篇
  2007年   21篇
  2006年   9篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   8篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1989年   1篇
  1987年   1篇
  1982年   1篇
  1976年   2篇
  1975年   1篇
  1972年   2篇
  1969年   1篇
  1954年   1篇
  1953年   1篇
排序方式: 共有259条查询结果,搜索用时 390 毫秒
141.
为将人表皮生长因子(EGF)受体膜外第Ⅲ功能区(hEGF-RⅢ)表达于大肠杆菌菌膜上,重组构建了EGF-RⅢ表达载体,并转化获得大肠杆菌表达株.放射性受体分析发现125I-EGF可与表达菌特异性结合,其特异性结合量随反应的时间和温度而变化,Scatchard分析显示表达菌表达单一亲和性受体,其解离常数为3.0×10-11 mol/L,每个细菌约有738个结合位点.免疫电镜显示EGF-RⅢ多分布于细菌菌膜上.  相似文献   
142.
We present the most comprehensive pan‐European assessment of future changes in cropland and grassland soil organic carbon (SOC) stocks to date, using a dedicated process‐based SOC model and state‐of‐the‐art databases of soil, climate change, land‐use change and technology change. Soil carbon change was calculated using the Rothamsted carbon model on a European 10 × 10′ grid using climate data from four global climate models implementing four Intergovernmental Panel on Climate Change (IPCC) emissions scenarios (SRES). Changes in net primary production (NPP) were calculated by the Lund–Potsdam–Jena model. Land‐use change scenarios, interpreted from the narratives of the IPCC SRES story lines, were used to project changes in cropland and grassland areas. Projections for 1990–2080 are presented for mineral soil only. Climate effects (soil temperature and moisture) will tend to speed decomposition and cause soil carbon stocks to decrease, whereas increases in carbon input because of increasing NPP will slow the loss. Technological improvement may further increase carbon inputs to the soil. Changes in cropland and grassland areas will further affect the total soil carbon stock of European croplands and grasslands. While climate change will be a key driver of change in soil carbon over the 21st Century, changes in technology and land‐use change are estimated to have very significant effects. When incorporating all factors, cropland and grassland soils show a small increase in soil carbon on a per area basis under future climate (1–7 t C ha?1 for cropland and 3–6 t C ha?1 for grassland), but when the greatly decreasing area of cropland and grassland are accounted for, total European cropland stocks decline in all scenarios, and grassland stocks decline in all but one scenario. Different trends are seen in different regions. For Europe (the EU25 plus Norway and Switzerland), the cropland SOC stock decreases from 11 Pg in 1990 by 4–6 Pg (39–54%) by 2080, and the grassland SOC stock increases from 6 Pg in 1990 to 1.5 Pg (25%) under the B1 scenario, but decreases to 1–3 Pg (20–44%) under the other scenarios. Uncertainty associated with the land‐use and technology scenarios remains unquantified, but worst‐case quantified uncertainties are 22.5% for croplands and 16% for grasslands, equivalent to potential errors of 2.5 and 1 Pg SOC, respectively. This is equivalent to 42–63% of the predicted SOC stock change for croplands and 33–100% of the predicted SOC stock change for grasslands. Implications for accounting for SOC changes under the Kyoto Protocol are discussed.  相似文献   
143.
瞿国伟  邵慧珍 《蛇志》1994,6(4):7-9
本文以浙江产蝮蛇毒为材料,经SephadexG-100和DEAE-SephadexA50二次柱层析,分离到的峰Ⅱ蛋白组份具有强烈抗血液凝固活性,并能够激活人血浆中的蛋白C,特异地使发色底物分解而产生颜色,生色反应光密度变化确定峰Ⅱ组份激活作用的大小。峰Ⅱ组份无直接生色作用,其激活血浆蛋白C的反应曲线类似国外同类产品Protac,与激活物的蛋白浓度和血浆浓度成正比关系,但激活作用较Protac弱。  相似文献   
144.
In this paper, we use the Rothamsted Carbon Model to estimate how cropland mineral soil carbon stocks are likely to change under future climate, and how agricultural management might influence these stocks in the future. The model was run for croplands occurring on mineral soils in European Russia and the Ukraine, representing 74 Mha of cropland in Russia and 31 Mha in the Ukraine. The model used climate data (1990–2070) from the HadCM3 climate model, forced by four Intergovernmental Panel on Climate Change (IPCC) emission scenarios representing various degrees of globalization and emphasis on economic vs. environmental considerations. Three land use scenarios were examined, business as usual (BAU) management, optimal management (OPT) to maximize profit, and soil sustainability (SUS) in which profit was maximized within the constraint that soil carbon must either remain stable or increase. Our findings suggest that soil organic carbon (SOC) will be lost under all climate scenarios, but less is lost under the climate scenarios where environmental considerations are placed higher than purely economic considerations (IPCC B1 and B2 scenarios) compared with the climate associated with emissions resulting from the global free market scenario (IPCC A1FI scenario). More SOC is lost towards the end of the study period. Optimal management is able to reduce this loss of SOC, by up to 44% compared with business as usual management. The soil sustainability scenario could be run only for a limited area, but in that area was shown to increase SOC stocks under three climate scenarios, compared with a loss of SOC under business as usual management in the same area. Improved agricultural soil management will have a significant role to play in the adaptation to, and mitigation of, climate change in this region. Further, our results suggest that this adaptation could be realized without damaging profitability for the farmers, a key criteria affecting whether optimal management can be achieved in reality.  相似文献   
145.
146.
Abstract Many studies are based on the premise that, on a local scale, diversity is the result of ecological processes, whereas on a regional scale factors such as the topography, geology, hydrology, and historical and evolutionary events would influence this control. The Baturité Mountain Range (Ceará state), located in the Brazilian semi‐arid zone, is considered an area of extreme importance for conservation with its vegetation varying with the altitude and slope (windward vs. leeward). On the windward (wet) slope, rainforest dominates, whereas the leeward (dry) slope is dominated by seasonal forests and thorny woodland. The aim of this study was to contribute to the knowledge of the patterns of richness and diversity of the family Leguminosae on a local scale (Baturité Mountain Range) as well as a regional scale (northeastern Brazil). The two slopes present quite distinct floras. The dry slope presents higher richness and diversity indices for Leguminosae than the wet slope. The highest diversity of Leguminosae in the dry areas did not corroborate the ideas of other studies carried out in neotropical forests (total flora) that the higher species richness was predicted for wet areas. The present study indicates that the historical and evolutionary processes influence the diversity patterns on a local scale (Baturité Mountain Range), as well as on a regional scale (Brazilian semi‐arid). Our results reinforce the uniqueness of each portion of this area and its importance for conservation.  相似文献   
147.
148.
Complement component 3a (C3a) plays a crucial role in the immune response and host defense, but it is also involved in pro-inflammatory responses, causing many inflammatory disorders. Blockade of C3a has been regarded as a potent therapeutic strategy for inflammatory diseases. Here, we present the development of a human C3a (hC3a)-specific protein binder, which effectively inhibits pro-inflammatory responses. The protein binder, which is composed of leucine-rich repeat modules, was selected against hC3a through phage display, and its binding affinity was matured up to 600 pM by further expanding the binding interface in a module-by-module manner. The developed protein binder was shown to have more than 10-fold higher specificity to hC3a compared with human C5a, exhibiting a remarkable suppression effect on pro-inflammatory response in monocyte, by blocking the interaction between hC3a and its receptor. The hC3a-specific protein binder is likely to have a therapeutic potential for C3a-mediated inflammatory diseases.  相似文献   
149.
1. The patterns of multiple paternity among the progeny of females are key properties of genetic mating systems. Female multiple mating should evolve due to direct or indirect benefits, but it may also partly be driven by the encounter rate with different potential mates. 2. In this study this hypothesis was experimentally tested in the European earwig (Forficula auricularia L.) by establishing experimental mating groups that differed in the number of males and females (i.e. density). The number of sires and mean sibling relatedness in each clutch were estimated using microsatellite‐based paternity analysis. 3. As predicted, the mean number of sires per clutch was significantly increased, and sibling relatedness decreased, in the higher density treatment where more potential male mates were available. This change was less than proportional to the number of males in the mating groups, indicating that mechanisms limiting multiple paternity in large mating groups were involved. There were no significant relationships between female reproductive success or male siring success with morphology (body size, weight, and forceps size). 4. The present results show that multiple paternity in F. auricularia clutches is partly determined by the availability of male mates and suggest that this effect is modulated by mechanisms in males and/or females that limit multiple paternity.  相似文献   
150.
1. All else being equal, the greater the local species richness of plants, the greater the number of associated herbivore species. Because most herbivore insects feed on a subset of closely related plant species, plant phylogenetic diversity is expected to play a key role in determining the number of herbivore species. What is not well known, however, is how an increase in the species richness of exotic plants affects the species richness of herbivores. 2. In this study, we used plant–fruit fly interactions to investigate the influence of the proportion and species richness of exotic host plants on the species richness of herbivorous insects. We also tested whether the phylogenetic diversity of host plants increases when the number of exotic plant species increases. 3. We found that the species richness of fruit flies is more accurately predicted by the richness of native host plants than by total plant species richness (including both native and exotic species). The proportion of exotic host species and the phylogenetic diversity of host plants had negative and positive effects, respectively, on the species richness of fruit flies. 4. Our findings suggest that a positive effect of plant richness on herbivore richness occurs only when an increase in plant diversity involves plant species with which native herbivores share some evolutionary history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号