首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   4篇
  284篇
  2017年   3篇
  2015年   3篇
  2014年   7篇
  2013年   12篇
  2012年   8篇
  2011年   21篇
  2010年   20篇
  2009年   26篇
  2008年   21篇
  2007年   30篇
  2006年   19篇
  2005年   16篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   5篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
21.
ABSTRACT Traditional methods of monitoring gray wolves (Canis lupus) are expensive and invasive and require extensive efforts to capture individual animals. Noninvasive genetic sampling (NGS) is an alternative method that can provide data to answer management questions and complement already-existing methods. In a 2-year study, we tested this approach for Idaho gray wolves in areas of known high and low wolf density. To focus sampling efforts across a large study area and increase our chances of detecting reproductive packs, we visited 964 areas with landscape characteristics similar to known wolf rendezvous sites. We collected scat or hair samples from 20% of sites and identified 122 wolves, using 8–9 microsatellite loci. We used the minimum count of wolves to accurately detect known differences in wolf density. Maximum likelihood and Bayesian single-session population estimators performed similarly and accurately estimated the population size, compared with a radiotelemetry population estimate, in both years, and an average of 1.7 captures per individual were necessary for achieving accurate population estimates. Subsampling scenarios revealed that both scat and hair samples were important for achieving accurate population estimates, but visiting 75% and 50% of the sites still gave reasonable estimates and reduced costs. Our research provides managers with an efficient and accurate method for monitoring high-density and low-density wolf populations in remote areas.  相似文献   
22.
Abstract 1. Climate change has been occurring at unprecedented rates and its impacts on biological populations is beginning to be well documented in the literature. For many species, however, long‐term records are not available, and trends have not been documented. 2. Using museum specimens from southern USA, we show that the stream‐dwelling beetle Gyretes sinuatus has shown an 8% increase in body size and change in body shape (fineness ratio) from 1928 to 1988. Any directional morphological change observed over time could be an indicator of a microevolutionary response. 3. During these 60 years, there have also been changes in temperature, precipitation, and location of collection sites. Unlike the global trend, mean annual temperature in the region has decreased, and furthermore, total annual precipitation has increased. By investigating how these various ecological and geographical variables may affect body size and shape, we can examine which pressures may promote larger and/or thinner beetles. 4. Results indicate that mean annual temperature was the most predictive variable for the change in size and shape. We suggest there is an adaptive role for temperature on body size and shape of stream dwelling organisms. 5. We found that museum specimens can be invaluable resources of information when collection date and location information is available. We promote the use of such specimens for future studies of the morphological response to climate change.  相似文献   
23.
ABSTRACT Sheep predation by coyotes (Canis latrans) is a major problem for sheep producers in North America. Solutions are facilitated by a basic understanding of the trophic dynamic context of this problem, one that likely varies geographically in important qualitative ways. Little is known about vertebrate trophic dynamics in Mediterranean ecosystems, where prey are diverse and their biomass is strongly influenced multi-annually by variable rainfall. We used long-term data sets from north-coastal California, USA, to investigate whether wild prey fluctuations caused immediate negative effects on sheep predation via a reduction in the coyote functional response or delayed positive effects on sheep predation via a numerical response by coyote predators. Because we could not measure prey biomass directly, we used variables associated with lower trophic levels (e.g., annual plant productivity, vole abundance, rainfall) as proxies for wild prey biomass. Coyote population growth rate was positively correlated with lower-trophic-level variables of the previous year, suggesting a numerical response, and sheep (ad F + lambs) predation was positively correlated with coyote abundance in the current year. Sheep predation also was negatively correlated with lower-trophic-level variables of the current year, suggesting an immediate buffering effect of wild prey on sheep predation. Together, coyote abundance and lower-trophic-level variables explained 47% of the multi-annual variation in sheep kills. The negative pathway between lower-trophic-level variables and sheep predation was stronger than the positive pathway, possibly due to the erratic nature of multi-annual fluctuations in lower-trophic-level variables, which could prevent the numerical response from reaching its full potential. Monthly analyses revealed a type III functional response of coyotes to lambs, which is expected to enhance buffering effects of wild prey on sheep predation. Our findings suggest the dominant effect of wild prey biomass on sheep predation by coyotes in this Mediterranean-type community is as a buffer.  相似文献   
24.
High‐latitude regions store large amounts of organic carbon (OC) in active‐layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near‐surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long‐term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near‐surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire‐induced thawing of near‐surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance.  相似文献   
25.
Precipitation regimes are predicted to become more variable with more extreme rainfall events punctuated by longer intervening dry periods. Water‐limited ecosystems are likely to be highly responsive to altered precipitation regimes. The bucket model predicts that increased precipitation variability will reduce soil moisture stress and increase primary productivity and soil respiration in aridland ecosystems. To test this hypothesis, we experimentally altered the size and frequency of precipitation events during the summer monsoon (July through September) in 2007 and 2008 in a northern Chihuahuan Desert grassland in central New Mexico, USA. Treatments included (1) ambient rain, (2) ambient rain plus one 20 mm rain event each month, and (3) ambient rain plus four 5 mm rain events each month. Throughout two monsoon seasons, we measured soil temperature, soil moisture content (θ), soil respiration (Rs), along with leaf‐level photosynthesis (Anet), predawn leaf water potential (Ψpd), and seasonal aboveground net primary productivity (ANPP) of the dominant C4 grass, Bouteloua eriopoda. Treatment plots receiving a single large rainfall event each month maintained significantly higher seasonal soil θ which corresponded with a significant increase in Rs and ANPP of B. eriopoda when compared with plots receiving multiple small events. Because the strength of these patterns differed between years, we propose a modification of the bucket model in which both the mean and variance of soil water change as a consequence of interannual variability from 1 year to the next. Our results demonstrate that aridland ecosystems are highly sensitive to increased precipitation variability, and that more extreme precipitation events will likely have a positive impact on some aridland ecosystem processes important for the carbon cycle.  相似文献   
26.
Invasions by non‐native insects can have important ecological impacts, particularly on island ecosystems. However, the factors that promote the success of invaders relative to co‐occurring non‐invasive species remain unresolved. For invasive ants, access to carbohydrate resources via interactions with both extrafloral nectary‐bearing plants and honeydew‐excreting insects may accelerate the invasion process. A first step towards testing this hypothesis is to determine whether invasive ants respond to variation in the availability of carbohydrate resources, and whether this response differs from that of co‐occurring, non‐invasive ants. We investigated the effect of carbohydrate subsidies on the short‐term foraging and hemipteran‐tending behaviours of the invasive ant Anoplolepis gracilipes (Formicidae) and co‐occurring ant species on an extrafloral nectary‐bearing plant by experimentally manipulating carbohydrate levels and tracking ant recruitment. We conducted experiments in 2 years at two sites: one site was invaded by A. gracilipes prior to 2007 and the other became invaded during the course of our study, allowing pre‐ (2007) and post‐invasion (2009) comparisons. Short‐term increases in carbohydrate availability increased the density of A. gracilipes workers on plants by as much as 400% and reduced tending of honeydew‐excreting insects by this species by up to 89%, with similar responses across years. In contrast, ants at the uninvaded site in 2007 showed a weak and non‐significant forager recruitment response. Across all sites, A. gracilipes workers were the only ants that responded to carbohydrate manipulations in 2009. Furthermore, ant–carbohydrate dynamics at a site newly invaded by A. gracilipes quickly diverged from dynamics at uninvaded sites and converged on those of the site with an established invasion. These findings suggest that carbohydrate resources may be particularly important for A. gracilipes invasions, and underscore the importance of species interactions, particularly putative mutualisms, in facilitating exotic species invasions.  相似文献   
27.
28.
Microsatellite data are widely used to test ecological and evolutionary hypotheses in wild populations. In this paper, we consider three typical sources of scoring errors capable of biasing biological conclusions: stuttering, large‐allele dropout and null alleles. We describe methods to detect errors and propose conventions to mitigate scoring errors and report error rates in studies of wild populations. Finally, we discuss potential bias in ecological or evolutionary conclusions based on data sets containing these scoring errors.  相似文献   
29.
30.
Polyploidy (whole‐genome duplication) has contributed significantly to angiosperm evolution and diversification. To date, it has been found that most polyploids are the result of multiple formation events, which may contribute to genetic diversity and affect interfertility among polyploid lineages of independent origin. A recently discovered allotetraploid derivative of Mimulus guttatus and M. nasutus, Mimulus sookensis, is found throughout the valleys of western Oregon and Vancouver Island. Here, we analyse the patterns of nucleotide diversity at three chloroplast and six nuclear loci in M. guttatus, M. nasutus and M. sookensis, to gain insight into the formation of M. sookensis. By analysing the patterns of genetic variation seen in the diploid progenitors in comparison with the variation seen in M. sookensis, we are able to show that M. sookensis has recurrently formed. We also observed that most M. sookensis individuals are fixed heterozygotes at all of the nuclear loci examined, suggesting that duplicate gene loss is not extensive in M. sookensis. To assess the possibility that hybridization among M. sookensis has contributed to genetic diversity, we conducted crossing experiments within M. sookensis. We found that M. sookensis of independent origin are highly interfertile, suggesting that crossing barriers do not exist within M. sookensis, and that hybridization among M. sookensis may result in new recombinant genotypes. Together, the data suggest that although recurrent origins may be common, they can contribute to genetic diversity without contributing to reproductive isolation among independently arisen polyploid lineages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号