首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   1篇
  2017年   1篇
  2014年   2篇
  2013年   5篇
  2012年   10篇
  2011年   15篇
  2010年   19篇
  2009年   17篇
  2008年   13篇
  2007年   19篇
  2006年   13篇
  2005年   18篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1954年   1篇
排序方式: 共有170条查询结果,搜索用时 171 毫秒
11.
Several studies suggest that global climate change could increase the toxicity of contaminants, but none of these studies explicitly integrate the effects of climate change on both susceptibility and duration of exposure to pollution. For many amphibian and aquatic insect species, exposure to contaminants is probably greatest during their fully aquatic embryonic and larval stages because these stages cannot readily escape water bodies where many contaminants accumulate and concentrate. Hence, by accelerating embryonic and larval development, global warming might reduce the duration of contaminant exposure for these taxa. To test this hypothesis, we isolated the effects of a temperature gradient (13–25 °C) on susceptibility (toxicity at a controlled exposure duration) and exposure of the streamside salamander, Ambystoma barbouri, to the herbicide atrazine (0, 4, 40, and 400 μg L?1) by quantifying growth, survival, hatching, and metamorphosis under an atrazine exposure duration that was either constant or that depended on time to metamorphosis (and thus temperature). Increasing atrazine concentrations reduced growth, delayed hatching and metamorphosis, and decreased embryonic and larval survival. Increasing temperatures enhanced growth, accelerated development, and reduced survival for embryos but not larvae. With the exception of growth, increasing temperatures generally did not enhance the toxicity of atrazine, but they did generally ameliorate the adverse effects of atrazine by accelerating development and reducing the duration of atrazine exposure. The actual effects of climate change on contaminants remains difficult to predict because temperature changes can affect chemical use, uptake, excretion, biotransformation, fate, transport, and bioavailability. However, this work highlights the importance of explicitly considering how climate change will affect both exposure and toxicity to contaminants to accurately assess risk.  相似文献   
12.
13.
Abstract.  1. Insect migration strategies are generally poorly understood due to the propensity for high-altitude flight of many insect species, and the technical difficulties associated with observing these movements. While some progress has been made in the study of the migration of important insect pests, the migration strategies of insect natural enemies are often unknown.
2. Suction trapping, radar monitoring, and high-altitude aerial netting were used to characterise the seasonal migrations in the U.K. of an assemblage of aphid predators: three green lacewings in the Chrysoperla carnea species complex.
3. Chrysoperla carnea sens. str . was found to be very abundant at high altitudes during their summer migration, and some individuals were capable of migrating distances of ≈ 300 km during their pre-ovipositional period. In contrast, high-altitude flights were absent in the autumn migration period, probably due to a behavioural adaptation that increases the probability that migrants will encounter their over-wintering sites. The other two species in the complex, C. lucasina and C. pallida , were much rarer, making up ≈ 3% of the total airborne populations throughout the study period.
4. The summer migration of C. carnea sens. str . was not directly temporally associated with the summer migration of its cereal aphid prey, but lagged behind by about 4 weeks. There was also no evidence of spatial association between aphid and lacewing populations.
5. The results show that to understand the population ecology of highly mobile insect species, it is necessary to characterise fully all aspects of their migration behaviour, including the role of high-altitude flights.  相似文献   
14.
Indirect effects of insect herbivory on leaf gas exchange in soybean   总被引:5,自引:0,他引:5  
Herbivory can affect plant carbon gain directly by removing photosynthetic leaf tissue and indirectly by inducing the production of costly defensive compounds or disrupting the movement of water and nutrients. The indirect effects of herbivory on carbon and water fluxes of soybean leaves were investigated using gas exchange, chlorophyll fluorescence and thermal imaging. Herbivory by Popillia japonica and Helicoverpa zea (Boddie) caused a 20–90% increase in transpiration from soybean leaflets without affecting carbon assimilation rates or photosynthetic efficiency (ΦPSII). Mechanical damage to interveinal tissue increased transpiration up to 150%. The spatial pattern of leaf temperature indicated that water loss occurred from injuries to the cuticle as well as from cut edges. A fluorescent tracer (sulforhodamine G) indicated that water evaporated from the apoplast approximately 100 µm away from the cut edges of damaged leaves. The rate of water loss from damaged leaves remained significantly higher than from control leaves for 6 d, during which time they lost 45% more water than control leaves (0.72 mol H2O per cm of damaged perimeter). Profligate water loss through the perimeter of damaged tissue indicates that herbivory may exacerbate water stress of soybeans under field conditions.  相似文献   
15.
1. Density‐dependent phase polyphenism occurs when changes in density during the juvenile stages result in a developmental shift from one phenotype to another. Density‐dependent phase polyphenism is common among locusts (Orthoptera: Acrididae). 2. Previously, we demonstrated a longitudinal geographic cline in adult body size (western populations = small adults; eastern populations = large adults) in the eastern lubber grasshopper (Romalea microptera) in south Florida. As lubbers are confamilial with locusts, we hypothesised that the longitudinal size cline was partly due to density‐dependent phase polyphenism. 3. We tested the effect of density, population, and density×population interaction on life‐history traits (pronotum length, mass, cumulative development time, growth rate) of, and proportion surviving to, each of the five instars and the adult stage in a 2 × 3 factorial laboratory experiment with two lubber populations, each reared from hatchling to adult at three different densities. 4. The effect of density on life history and survival was independent of the effects of population on life history and survival. Higher densities led to larger adult sizes (pronotum, mass) and lower survivorship. The western population had smaller adult masses, fewer cumulative days to the adult stage, and higher survivorship than the eastern population. 5. Our data suggest that lubber grasshoppers exhibit density‐dependent phase polyphenism initiated by the physical presence of conspecifics. However, the plastic response of adult size to density observed in the laboratory is not consistent with the relationship between phenotypes and adult density in the field. Genetic differences between populations observed in the laboratory could contribute to size and life‐history differences among lubber populations in the field.  相似文献   
16.
1. Local assemblage structure, from a deterministic perspective, is presumably dictated by the regional species pool as well as regulated by local factors. We examined the relationships of the regional species pool and local hydrological characteristics to local species richness of North American freshwater fishes using data sets collected during the National Water Quality Assessment program conducted by the United States Geological Survey. 2. We predicted that local species richness is ultimately constrained by the composition of the regional species pool and further associated with local hydrological factors. Moreover, we predicted that variation in local species richness within major families can be explained by different combinations of hydrological characteristics that represent lineage‐specific responses to the environment. 3. Daily discharge and regional and local species richness data were assembled from 41 stream localities across the United States. Multiple stepwise regressions were conducted to predict local species richness, based on regional species richness, mean discharge and hydrological characteristics quantified by nine variables characterising flow variability. Species richness at each site was calculated for the entire assemblage as well as within the four most species‐rich families in the data set (Catostomidae, Centrarchidae, Cyprinidae and Percidae). 4. Local species richness was best predicted by a combination of regional species richness and discharge magnitude when all species were considered. Regional species richness was a significant explanatory variable of local species richness for three of four families (Catostomidae, Centrarchidae, Cyprinidae), but not for Percidae. Local richness in Centrarchidae and Cyprinidae was positively correlated with temporal flow variability as well as high and low flow duration, respectively, while richness in Catostomidae and Percidae tended to be associated with discharge volume. In addition, local species richness for three of the four major families was positively correlated with species richness of the other families in the assemblage, potentially suggesting the influence of local habitat quality and heterogeneity. 5. Results suggest the importance of the combined influences of the regional species pool and local hydrological characteristics on local richness in freshwater fishes, with variation in richness within each family predicted by different characteristics of flow regimes.  相似文献   
17.
Biosynthetic pathways, gene replacement and the antiquity of life   总被引:2,自引:0,他引:2  
The appearance of oxygen in the Earth's atmosphere, a by‐product of oxygenic photosynthesis invented by primitive cyanobacteria, stands as one of the major events in the history of life on Earth. While independent lines of geological data suggest that oxygen first began to accumulate in the atmosphere c. 2.2 billion years ago, a growing body of biomarker data purports to push this date back fully 500 million years, based on the presumption that an oxygen‐dependent biochemistry was functional at this time. Here, we present a cautionary tale in the extension of modern biochemistry into Archean biota, identifying a suite of examples of evolutionary convergence where an enzyme catalysing a highly specific, O2‐requiring reaction has an oxygen‐independent counterpart, able to carry out the same reaction under anoxic conditions. The anaerobic enzyme has almost certainly been replaced in many reactions by the more efficient and irreversible aerobic version that uses O2. We suggest that the unambiguous interpretation of Archean biomarkers demands a rigorous understanding of modern biochemistry and its extensibility into ancient organisms.  相似文献   
18.
Abstract.  A revision of the Charis cleonus group of Neotropical riodinid butterflies is presented, including discussions on the taxonomy, biogeography and biology of its species, and illustrations of the adults and male and female genitalia (where known) of all taxa. We recognize twenty-two species, including nineteen new species: C. ariquemes sp.n., C. brasilia sp.n., C. breves sp.n., C. cacaulandia sp.n., C. cuiaba sp.n., C. humaita sp.n., C. ipiranga sp.n., C. iquitos sp.n., C. ma sp.n., C. manicore sp.n., C. manu sp.n., C. matic sp.n., C. maues sp.n., C. negro sp.n., C. palcazu sp.n., C. rocana sp.n., C. santarem sp.n., C. tapajos sp.n and C. tefe sp.n. A cladistic analysis using thirty-six characters of male and female genitalia and external facies generated a single most parsimonious cladogram highlighting the existence of two clades, the major and cleonus subgroups. As each species largely occupies a parapatric range, this cladogram provides the opportunity to reassess historical relationships among areas of endemism in the Amazon basin.  相似文献   
19.
Abstract Fragmented habitats are a common occurrence in many marine systems, but remain poorly studied in comparison to their terrestrial counterparts. Here, I show that crustaceans inhabiting fragmented Zostera seagrass meadows show a dramatic response (change in abundance) to patch edges, with 11 out of 12 tests showing greatest abundance at the boundary between sand and seagrass. These patterns occurred on a scale of 0.25–1 m around the patch edge. Changes in seagrass biomass are unlikely to explain this pattern, as seagrass biomass increased smoothly at the patch edge, and did not decline towards patch interiors. In contrast to crustaceans, only a few polychaete taxa responded to the patch edge (9 of 25 tests), and bivalves generally did not show a response (1 of 5 tests). These latter groups are predominantly infaunal, and their lack of response may be partly due to the presence of substantial quantities of seagrass root and rhizome material in the sand habitat, which was defined visually based on the lack of above‐ground seagrass components only.  相似文献   
20.
The higher‐level phylogeny of the order Hemiptera remains a contentious topic in insect systematics. The controversy is chiefly centred on the unresolved question of whether or not the hemipteran suborder Auchenorrhyncha (including the extant superfamilies Fulgoroidea, Membracoidea, Cicadoidea and Cercopoidea) is a monophyletic lineage. Presented here are the results of a multilocus molecular phylogenetic investigation of relationships among the major hemipteran lineages, designed specifically to address the question of Auchenorrhyncha monophyly in the context of broad taxonomic sampling across Hemiptera. Phylogenetic analyses (maximum parsimony, maximum likelihood and Bayesian inference) were based on DNA nucleotide sequence data from seven gene regions (18S rDNA, 28S rDNA, histone H3, histone 2A, wingless, cytochrome c oxidase I and NADH dehydrogenase subunit 4) generated from 86 in‐group exemplars representing all major lineages of Hemiptera (plus seven out‐group taxa). All combined analyses of these data recover the monophyly of Auchenorrhyncha, and also support the monophyly of each of the following lineages: Hemiptera, Sternorrhyncha, Heteropterodea, Heteroptera, Fulgoroidea, Cicadomorpha, Membracoidea, Cercopoidea and Cicadoidea. Also presented is a review of the major lines of morphological and molecular evidence for and against the monophyly of Auchenorrhyncha.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号