首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   22篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   9篇
  2014年   4篇
  2013年   41篇
  2012年   21篇
  2011年   18篇
  2010年   2篇
  2009年   13篇
  2008年   12篇
  2007年   11篇
  2006年   19篇
  2005年   10篇
  2004年   12篇
  2003年   23篇
  2002年   8篇
  2001年   16篇
  2000年   22篇
  1999年   8篇
  1998年   7篇
  1997年   12篇
  1996年   6篇
  1995年   10篇
  1994年   9篇
  1993年   8篇
  1992年   18篇
  1991年   7篇
  1990年   7篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有381条查询结果,搜索用时 15 毫秒
91.
92.
93.
It has recently been demonstrated that pressure induces folding of the α-helix of an alanine-based peptide (AK20), which is a monomer in water (Imamura and Kato, Proteins 2009;76:911–918). The present study focused on a coiled coil peptide GCN4-p1, the α-helices of which associate via a hydrophobic core, to examine whether the pressure stability of the α-helices depends on the hydrophobic core. Fourier transform infrared spectroscopy was used to investigate the effect of pressure on the secondary structures of GCN4-p1. The infrared spectra of GCN4-p1 shows the two amide I' peaks at ∼ 1650 and ∼ 1630 cm− 1 stemming from the solvent-inaccessible α-helix and the solvent-accessible α-helix, respectively. The intensities of both the peaks increase with increasing pressure, whereas they decrease with increasing temperature. This indicates that pressure induces both the α-helices of GCN4-p1 to fold. The present result suggests that the positive volume change upon unfolding of an α-helix is a common characteristic of peptides. The pressure-induced stabilization of the α-helices is discussed in comparison with the pressure denaturation of proteins.  相似文献   
94.
The lymphatic system is essential for fluid homeostasis, immune responses, and fat absorption, and is involved in many pathological processes, including tumor metastasis and lymphedema. Despite its importance, progress in understanding the origins and early development of this system has been hampered by lack of defining molecular markers and difficulties in observing lymphatic cells in vivo and performing genetic and experimental manipulation of the lymphatic system. Recent identification of new molecular markers, new genes with important functional roles in lymphatic development, and new experimental models for studying lymphangiogenesis has begun to yield important insights into the emergence and assembly of this important tissue. This review focuses on the mechanisms regulating development of the lymphatic vasculature during embryogenesis. Birth Defects Research (Part C) 87:222–231, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
95.
Self-incompatibility in Solanaceae is controlled by a single multiallelic locus, the S-locus. The S-allele associated ribonucleases (S-RNases) in the pistil are involved in pollen rejection. In this work, we analyzed two newly isolated lines of Petunia hybrida, termed PB and PF. They both had the same set of S-RNases (SB1- and SB2-RNases), however the PB was a self-incompatible diploid while PF was a self-compatible tetraploid. Cross pollination tests between PB and PF indicated diploid pollen from PF lost the incompatibility phenotype. In order to clarify the effects of polyploidy on pollen phenotypic change, we artificially induced tetraploid plants from a diploid SB1SB2 heterozygote (= PB) and a diploid SB1SB1 homozygote. The obtained SB1 SB1SB1SB1 homoallelic tetraploid remained self-incompatible, whereas the SB1SB1SB2SB2 heteroallelic tetraploid became self-compatible. These data suggested that the diploid heteroallelic pollen lost the incompatibility phenotype and had the characteristics of self-compatibility with SB1SB2 style.  相似文献   
96.
97.
Using an X-ray microanalysis system fitted with variable-pressure scanning electron microscopy, we noted that many calcium crystals accumulated under the stomium in the anther of Petunia. When the anther was dehisced and pollen grains were released from the stomata, the calcium crystals adhered to pollen grains and moved to the stigma together with pollen grains. In contrast, an X-ray microanalysis of the stigma surface before pollination detected no calcium emission on the stigma surface. Furthermore, pollen germination and pollen tube growth in medium without Ca occurred as in complete medium. However, after the pollen grains had been washed with abundant germination medium without calcium, pollen germination in the medium without Ca was inhibited. These results show that the calcium crystals dissolved in the aqueous drop under the exudate on the stigma and supplied calcium ions for pollen germination. In addition, calcium crystals were produced not only in the anther of Petunia but also in Nicotiana, suggesting that calcium crystals supply pollen grains with the calcium ions required for pollen germination and serve to improve reproduction efficiency in Solanaceae.  相似文献   
98.
In most self-incompatible plant species, recognition of self-pollen is controlled by a single locus, termed the S-locus. In Brassica, genetic dissection of the S-locus has revealed the presence of three highly-polymorphic genes: S-receptor kinase (SRK), S-locus protein 11 (SP11) (also known as S-locus cysteine-rich protein; SCR) and S-locus glycoprotein (SLG). SRK encodes a membrane-spanning serine/threonine kinase that determines the S-haplotype specificity of the stigma. SP11 encodes a small cysteine-rich protein that determines the S-haplotype specificity of pollen. SLG encodes a secreted form of stigma protein similar to the extracellular domain of SRK. Recent biochemical studies have revealed that SP11 functions as the sole ligand for its cognate SRK receptor complex. Their interaction induces the autophosphorylation of SRK, which is expected to trigger the signalling cascade that results in the rejection of self-pollen. This so-called ligand-receptor complex interaction and receptor activation occur in an S-haplotype-specific manner, and this specificity is almost certainly the basis for self-pollen recognition.  相似文献   
99.
The discovery of endogenous bioactive peptides has typically required a lengthy identification process. Computer-assisted analysis of cDNA and genomic DNA sequence information can markedly shorten the process. A bioinformatic analysis of full-length, enriched human cDNA libraries searching for previously unidentified bioactive peptides resulted in the identification and characterization of two related peptides of 28 and 20 amino acids, which we designated salusin-alpha and salusin-beta. Salusins are translated from an alternatively spliced mRNA of TOR2A, a gene encoding a protein of the torsion dystonia family. Intravenous administration of salusin-alpha or salusin-beta to rats causes rapid, profound hypotension and bradycardia. Salusins increase intracellular Ca2+, upregulate a variety of genes and induce cell mitogenesis. Salusin-beta stimulates the release of arginine-vasopressin from rat pituitary. Expression of TOR2A mRNA and its splicing into preprosalusin are ubiquitous, and immunoreactive salusin-alpha and salusin-beta are detected in many human tissues, plasma and urine, suggesting that salusins are endocrine and/or paracrine factors.  相似文献   
100.
To investigate the role of the heme axial ligand in the conformational stability of c-type cytochrome, we constructed M58C and M58H mutants of the red alga Porphyra yezoensis cytochrome c(6) in which the sixth heme iron ligand (Met58) was replaced with Cys and His residues, respectively. The Gibbs free energy change for unfolding of the M58H mutant in water (DeltaG degrees (unf)=1.48 kcal/mol) was lower than that of the wild-type (2.43 kcal/mol), possibly due to the steric effects of the mutation on the apoprotein structure. On the other hand, the M58C mutant exhibited a DeltaG degrees (unf) of 5.45 kcal/mol, a significant increase by 3.02 kcal/mol compared with that of wild-type. This increase was possibly responsible for the sixth heme axial bond of M58C mutant being more stable than that of wild-type according to the heme-bound denaturation curve. Based on these observations, we propose that the sixth heme axial ligand is an important key to determine the conformational stability of c-type cytochromes, and the sixth Cys heme ligand will give stabilizing effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号