首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   39篇
  2020年   7篇
  2018年   7篇
  2017年   6篇
  2016年   10篇
  2015年   17篇
  2014年   16篇
  2013年   23篇
  2012年   41篇
  2011年   29篇
  2010年   20篇
  2009年   18篇
  2008年   19篇
  2007年   21篇
  2006年   13篇
  2005年   18篇
  2004年   11篇
  2003年   16篇
  2002年   12篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   6篇
  1994年   6篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1985年   6篇
  1984年   3篇
  1983年   6篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1975年   3篇
  1974年   6篇
  1973年   10篇
  1972年   8篇
  1971年   15篇
  1970年   10篇
  1969年   4篇
  1968年   5篇
  1967年   11篇
  1966年   9篇
  1965年   7篇
  1960年   3篇
排序方式: 共有511条查询结果,搜索用时 93 毫秒
81.
82.
83.
A link between altered levels of various gangliosides and the development of insulin resistance was described in transgenic mice. Naturally occurring glycosphingolipids were shown to exert immunomodulatory effects in a natural killer T (NKT) cell-dependent manner. This study examined whether glycosphingolipid-induced modulation of the immune system may reduce pancreatic and liver steatosis and stimulate insulin secretion in the Cohen diabetes-sensitive (CDS) rat, a lean model of non-insulin-resistant, nutritionally induced diabetes. Four groups of CDS rats fed a diabetogenic diet were treated with daily intraperitoneal injections of glycosphingolipids beta-glucosylceramide, beta-lactosylceramide, a combination of both (IGL), or vehicle (PBS) for up to 45 days. Immune modulation was assessed by fluorescence-activated cell sorting analysis of intrahepatic and intrasplenic lymphocytes. Steatosis was assessed by MRI imaging and histological examination of liver and pancreas, Blood glucose and plasma insulin concentrations were assessed during an oral glucose tolerance test. Administration of glycosphingolipids, particularly IGL, increased intrahepatic trapping of CD8 T and NKT lymphocytes. Pancreatic and liver histology were markedly improved and steatosis was reduced in all treated groups compared with vehicle-treated rats. Insulin secretion was restored after glycosphingolipid treatment, resulting in improved glucose tolerance. The immunomodulatory effect of beta-glycosphingolipids improved the beta-cell function of the hyperglycemic CDS rat. Thus our results suggest a role for the immune system in the pathogenesis of diabetes in this model.  相似文献   
84.
Galacto-oligosaccharides (GOS) are versatile food ingredients that possess prebiotic properties. However, at present there is a lack of precise analytical methods to demonstrate specific GOS consumption by bifidobacteria. To better understand the role of GOS as prebiotics, purified GOS (pGOS) without disaccharides and monosaccharides was prepared and used in bacterial fermentation experiments. Growth curves showed that all bifidobacteria assayed utilized and grew on pGOS preparations. We used a novel mass spectrometry approach involving matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance (MALDI-FTICR) to determine the composition of oligosaccharides in GOS syrup preparations. MALDI-FTICR analysis of spent fermentation media demonstrated that there was preferential consumption of selected pGOS species by different bifidobacteria. The approach described here demonstrates that MALDI-FTICR is a rapid-throughput tool for comprehensive profiling of oligosaccharides in GOS mixtures. In addition, the selective consumption of certain GOS species by different bifidobacteria suggests a means for targeting prebiotics to enrich select bifidobacterial species.Galacto-oligosaccharides (GOS) are nondigestible carbohydrates and versatile food ingredients that possess prebiotic properties (1). In addition, other health benefits have been reported to result from consumption of these oligosaccharides, such as stimulation of intestinal mobility and mineral absorption, elimination of ammonium, and colon cancer prevention, as well as protection against certain pathogenic bacterial infections (6, 11, 19).The physicochemical characteristics of GOS have enabled them to be incorporated in food as prebiotic ingredients. GOS have been of interest in acidic beverages and fermented milk formulations since they exhibit increased thermal stability in acidic environments compared to fructo-oligosaccharides (16, 21). Thus, in the past decade, the applications of GOS in human food products have included dairy products, sugar replacements, diet supplements, and infant formula (11).Commercial GOS preparations are produced by enzymatic treatment of lactose with β-galactosidases from different sources, such as fungi, yeast, or bacteria, which results in a mixture of oligomers with various chain lengths (1). Thus, the basic structure of GOS includes a lactose core at the reducing end, which is typically elongated with up to six galactose residues. Structural diversity in GOS preparations is dependent on the enzyme used in the transgalactosylation reaction and the experimental conditions used, such as pH and temperature (5).Considerable effort has been made to understand the effects of GOS in vivo, and most studies have described the impact of GOS on intestinal bacterial population shifts and production of short-chain fatty acids attributed to bacterial fermentation. While there have a been a variety of in vitro studies characterizing the growth of different gut microbes on GOS, the majority of these studies used commercially available preparations of GOS. These commercial preparations contain high concentrations of monosaccharides (i.e., galactose and glucose) and the disaccharide lactose, both of which remain in the product after the transgalactosylation reaction. However, monosaccharides are the preferred substrates for most microorganisms when they are available in a mixed-carbon source (2). Thus, to evaluate growth on GOS, removal of monosaccharides and lactose is helpful (15).An analytical method currently used to measure GOS in food and feed products is high-pH anion-exchange chromatography (HPAEC) coupled to analysis with a pulse amperometric detector (PAD) (4). Van Laere and coworkers have used this method to monitor GOS fermentation in Bifidobacterium adolescentis cultures (20). However, HPAEC-PAD analysis is time-consuming and thus a low-throughput method. More importantly, due to the detector, in HPAEC-PAD analysis there is a differential response to oligosaccharides with higher degrees of polymerization (DP). Thus, new analytical approaches are needed to specifically characterize the consumption of GOS and other prebiotics by probiotic bacteria.We have previously developed analytical methods employing high-mass-accuracy and high-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) to characterize bacterial consumption of human milk oligosaccharides and fructo-oligosaccharides (9, 10, 14, 17). The matrix-assisted laser desorption ionization (MALDI)-FTICR method is a sensitive and robust analytical method with high-performance capability, and it allows rapid and unambiguous assignment of oligosaccharide signals.The aims of the present study were to investigate the oligosaccharide composition of GOS syrup preparations using MALDI-FTICR MS, to test lactose-free purified GOS (pGOS) as a sole carbon source in bifidobacterial fermentation experiments, and to determine the pGOS consumption profile by MALDI-FTICR MS. Four major bifidobacterial phylotypes, B. adolescentis, Bifidobacterium breve, Bifidobacterium longum subsp. infantis, and Bifidobacterium longum subsp. longum, were used, and our results demonstrate that there is differential consumption of individual GOS species by various bifidobacteria, which provides a conceptual basis for targeted enrichment of specific bifidobacterial strains using specific GOS fractions.  相似文献   
85.
Aims:  To investigate the interactions of Salmonella enterica with abiotic and plant surfaces and their effect on the tolerance of the pathogen to various stressors.
Methods and Results:  Salmonella strains were tested for their ability to form biofilm in various growth media using a polystyrene plate model. Strong biofilm producers were found to attach better to intact Romaine lettuce leaf tissue compared to weak producers. Confocal microscopy and viable count studies revealed preferential attachment of Salmonella to cut-regions of the leaf after 2 h at 25°C, but not for 18 h at 4°C. Storage of intact lettuce pieces contaminated with Salmonella for 9 days at 4°C resulted only in small changes in population size. Exposure of lettuce-associated Salmonella cells to acidic conditions (pH 3·0) revealed increased tolerance of the attached vs planktonic bacteria.
Conclusions:  Biofilm formation on polystyrene may provide a suitable model to predict the initial interaction of Salmonella with cut Romaine lettuce leaves. Association of the pathogen with lettuce leaves facilitates its persistence during storage and enhances its acid tolerance.
Significance and Impact of the Study:  Understanding the interactions between foodborne pathogens and lettuce might be useful in developing new approaches to prevent fresh produce-associated outbreaks.  相似文献   
86.
We tested the pathogenicity of 18 Metarhizium anisopliae (Metschn.) Sorokin isolates and 22 Beauveria bassiana (Balsamo) Vuillemin isolates against Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) larvae and adults. The efficacy of the most virulent isolate—M. anisopliae K—was evaluated in containers with a concrete bottom covered with wood shavings, under simulated poultry house conditions. Application of conidia of this isolate to the shavings or directly to the concrete bottom reduced the yield of larvae in 8–15 time compared with the control. In another test, the mortality of mature larvae placed on previously inoculated shavings or bottom reached 80–90% within 14 days, compared with 14% in the control. The residual activity of conidia kept at 28°C retained its initial level during 14 days post-inoculation, but declined after three weeks. Based on our data M. anisopliae has considerable potential for the control of A. diaperinus.
Michael SamishEmail: Email:
  相似文献   
87.
88.

Key Message

Rapid LD decay in wild emmer population from Israel allows high-resolution association mapping. Known and putative new stripe rust resistance genes were found.

Abstract

Genome-wide association mapping (GWAM) is becoming an important tool for the discovery and mapping of loci underlying trait variation in crops, but in the wild relatives of crops the use of GWAM has been limited. Critical factors for the use of GWAM are the levels of linkage disequilibrium (LD) and genetic diversity in mapped populations, particularly in those of self-pollinating species. Here, we report LD estimation in a population of 128 accessions of self-pollinating wild emmer, Triticum turgidum ssp. dicoccoides, the progenitor of cultivated wheat, collected in Israel. LD decayed fast along wild emmer chromosomes and reached the background level within 1 cM. We employed GWAM for the discovery and mapping of genes for resistance to three isolates of Puccinia striiformis, the causative agent of wheat stripe rust. The wild emmer population was genotyped with the wheat iSelect assay including 8643 gene-associated SNP markers (wheat 9K Infinium) of which 2,278 were polymorphic. The significance of association between stripe rust resistance and each of the polymorphic SNP was tested using mixed linear model implemented in EMMA software. The model produced satisfactory results and uncovered four significant associations on chromosome arms 1BS, 1BL and 3AL. The locus on 1BS was located in a region known to contain stripe rust resistance genes. These results show that GWAM is an effective strategy for gene discovery and mapping in wild emmer that will accelerate the utilization of this genetic resource in wheat breeding.  相似文献   
89.
Exposure of live cells to shear flow induces major changes in cell shape, adhesion to the extracellular matrix, and migration. In the present study, we show that exposure of cultured multiple myeloma (MM) cells to shear flow of 4–36 dynes/cm2 triggers the extension of long tubular protrusions (denoted flow‐induced protrusions, or FLIPs) in the direction of the flow. These FLIPs were found to be rich in actin, contain few or no microtubules and, apart from endoplasmic reticulum (ER)‐like membranal structures, are devoid of organelles. Studying the dynamics of this process revealed that FLIPs elongate at their tips in a shear force‐dependent manner, and retract at their bases. Examination of this force dependence revealed considerable heterogeneity in the mechanosensitivity of individual cells, most likely reflecting the diversity of the malignant B cell population. The mechanisms underlying FLIP formation following mechanical perturbation, and their relevance to the cellular trafficking of MM cells, are discussed. J. Cell. Physiol. 226: 3197–3207, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   
90.
This study evaluated the diversity of cultivable plant growth-promoting (PGP) bacteria associated with apple trees cultivated under different crop management systems and their antagonistic ability against Colletotrichum gloeosporioides. Samples of roots and rhizospheric soil from apple trees cultivated in organic and conventional orchards in southern Brazil were collected, together with soil samples from an area never used for agriculture (native field). Bacteria were identified at the genus level by PCR-RFLP and partial sequencing of the 16S rRNA, and were evaluated for some PGP abilities. The most abundant bacterial genera identified were Enterobacter (27.7%), Pseudomonas (18.7%), Burkholderia (13.7%), and Rahnella (12.3%). Sixty-nine isolates presented some antagonist activity against C. gloeosporioides. In a greenhouse experiment, five days after exposure to C. gloeosporioides, an average of 30% of the leaf area of plants inoculated with isolate 89 (identified as Burkholderia sp.) were infected, whereas 60 to 73% of the leaf area of untreated plants was affected by fungal attack. Our results allowed us to infer how anthropogenic activity is affecting the bacterial communities in soil associated with apple tree crop systems, and to obtain an isolate that was able to delay the emergence of an important disease for this culture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号