首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   19篇
  2023年   6篇
  2022年   1篇
  2021年   11篇
  2020年   4篇
  2019年   5篇
  2018年   14篇
  2017年   6篇
  2016年   9篇
  2015年   10篇
  2014年   20篇
  2013年   21篇
  2012年   15篇
  2011年   28篇
  2010年   12篇
  2009年   14篇
  2008年   14篇
  2007年   11篇
  2006年   15篇
  2005年   9篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2001年   13篇
  2000年   8篇
  1999年   7篇
  1998年   2篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有288条查询结果,搜索用时 20 毫秒
121.
A relatively simple method was developed to fabricate CrN/Cu nanocomposite coatings using pulsed DC magnetron sputtering for application in antibacterial activity. These nanocomposite coatings were applied on titanium (Ti)-modified stainless steel substrata (D-9 alloy) and the antibacterial activity of these coating with respect to the Gram-negative bacterium Pseudomonas aeruginosa was investigated qualitatively and quantitatively. Scanning electron microscopy, epifluorescence microscope analyses, and total viable counts confirmed that inclusion of copper in the CrN/Cu nanocomposite coatings provided antibacterial activity against P. aeruginosa. The quantitative examination of the bacterial activity of P. aeruginosa was estimated by the survival ratio as calculated from the number of viable cells which formed colonies on nutrient agar plates.  相似文献   
122.
123.
Regulator of G protein signaling 6 (RGS6) is a member of a family of proteins called RGS proteins, which function as GTPase-activating proteins (GAPs) for Gα subunits. Given the role of RGS6 as a G protein GAP, the link between G protein activation and cancer, and a reduction of cancer risk in humans expressing a RGS6 SNP leading to its increased translation, we hypothesized that RGS6 might function to inhibit growth of cancer cells. Here, we show a marked down-regulation of RGS6 in human mammary ductal epithelial cells that correlates with the progression of their transformation. RGS6 exhibited impressive antiproliferative actions in breast cancer cells, including inhibition of cell growth and colony formation and induction of cell cycle arrest and apoptosis by mechanisms independent of p53. RGS6 activated the intrinsic pathway of apoptosis involving regulation of Bax/Bcl-2, mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, activation of caspases-3 and -9, and poly(ADP-ribose) polymerase cleavage. RGS6 promoted loss of mitochondrial membrane potential (ΔΨ(m)) and increases in reactive oxygen species (ROS). RGS6-induced caspase activation and loss of ΔΨ(m) was mediated by ROS, suggesting an amplification loop in which ROS provided a feed forward signal to induce MOMP, caspase activation, and cell death. Loss of RGS6 in mouse embryonic fibroblasts dramatically impaired doxorubicin-induced growth suppression and apoptosis. Surprisingly, RGS6-induced apoptosis in both breast cancer cells and mouse embryonic fibroblasts does not require its GAP activity toward G proteins. This work demonstrates a novel signaling action of RGS6 in cell death pathways and identifies it as a possible therapeutic target for treatment of breast cancer.  相似文献   
124.
Inosine monophosphate dehydrogenase (IMPDH) enzyme involves in the biosynthesis pathway of guanosine nucleotide. Type II isoform of the enzyme is selectively upregulated in neoplastic fast replicating lymphocytes and CML cancer cells. The hIMPDH-II is an excellent target for antileukemic agent. The detailed investigation during MD-Simulation (15 ns) of three different unliganded structures (1B3O, 1JCN and 1JR1) have clearly explored the salt bridge mediated stabilization of inter or intra domain (catalytic domains I(N), I(C) with res. Id. 28-111 and 233-504, whereas two CBS domains C?, C? are 112-171 and 172-232) in IMPDH enzyme which are mostly inaccessible in their X-rays structures. The salt bridge interaction in I(N)---C? inter-domain of hIMPDH-I, I(N)---C? of IMPDH-II and C?---I(C) of nhIMPDH-II are discriminative features among the isoforms. The I(N)---C? recognition in hIMPDH-II (1B3O) is missing in type-I isoform (1JCN). The salt bridge interaction D232---K238 at the surface of protein and the involvement of three conserved water molecules or the hydrophilic centers (WA232(OD1), WB 232(OD2) and W23?(NZ)) to those acidic and basic residues seem to be unique in hIMPDH-II. The hydrophilic susceptibility, geometrical and electronic consequences of this salt bridge interaction could be useful to design the topology of specific inhibitor for hIMPDH-II which may not be effective for hIMPDH-I. Possibly, the aliphatic ligand containing carboxyl, amide or hydrophilic groups with flexible structure may be implicated for hIMPDH-II inhibitor design using the conserved water mimic drug design protocol.  相似文献   
125.
Matrix Metalloproteinase (MMP)--13 or Collagenase--3 plays a significant role in the formation and remodeling of bone, tumor invasion and causes osteoarthritis. Water molecular dynamic studies of the five (1XUC, 1XUD, 1XUR, 456C, 830C) PDB and solvated structures of MMP-13 in human have been carried out upto 5 ns on assigning the differential charges (+2, +1, +0.5 e) to both the Zinc ions. The MM and MD-studies have revealed the coordination of three water molecules (W(H), W(I) and W(S)) to Zn(c) and one water to Zn(s). The transition of geometry around the Znc from tetrahedral to octahedral via trigonal bipyramidal, and for Zn(s) from tetrahedral to trigonal bipyramidal are seem interesting. Recognition of two zinc ions through water molecular bridging (Zn(c) - W(H) (W(1))...W(2)....W(3)....H(187) Zn(s)) and the stabilization of variable coordination geometries around metal ions may indicate the possible involvement of Zn(c) ...Zn(s) coupled mechanism in the catalytic process. So the hydrophilic topology and stereochemistry of water mediated coupling between Zn-ions may provide some plausible hope towards the design of some bidentate/polydentate bridging ligands or inhibitors for MMP-13.  相似文献   
126.
127.
128.
129.
The present study was planned to investigate the effect of arsenic in rats on several biochemical indices of oxidative stress. Rats were exposed to arsenite in drinking water for upto 12 weeks. Chronic exposure to arsenic for a period of 12 weeks significantly (p < 0.05) increased arsenic burden in blood, liver, and kidney. Several intrinsic antioxidant defenses were activated after a 4-week exposure to arsenic. Some remained elevated, but others became depressed over a longer exposure period. Alterations in most of the biochemical variables reached statistical significant (p < 0.05). Arsenic significantly (p < 0.01) reduced mRNA expression of the superoxide dismutase 2 (SOD2) gene with respect to the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. These observations indicated that prolong exposure to arsenic causes induction of oxidative stress and biochemical alterations.  相似文献   
130.
Inosine monophosphate dehydrogenase (IMPDH) of human is involved in GMP biosynthesis pathway, increased level of IMPDH‐II (an isoform of enzyme) activity have found in leukemic and sarcoma cells. Modeling and extensive molecular dynamics simulation (15 ns) studies of IMPDH‐II (1B3O PDB structure) have indicated the intricate involvement of four conserved water molecules (W 1, W 2, W 3, and W 4) in the conformational transition or the mobilities of “flap” (residues 400–450) and “loop” (residues 325–342) regions in enzyme. The stabilization of active site residues Asn 303, Gly 324, Ser 329, Cys 331, Asp 364, and Tyr 411 through variable H‐bonding coordination from the conserved water molecular center seems interesting in the uninhibited hydrated form of human IMPDH‐II structures. This conformational transition or the flexibility of mobile regions, water molecular recognition to active site residues Cys 331 and Tyr 411, and the presence of a hydrophilic cavity ~540 Å3 (enclaved by the loop and flap region) near the C‐terminal surface of this enzyme may explore a rational hope toward the water mimic inhibitor or anticancer agent design for human. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号