首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2284篇
  免费   115篇
  2022年   5篇
  2021年   23篇
  2020年   11篇
  2019年   21篇
  2018年   31篇
  2017年   35篇
  2016年   55篇
  2015年   73篇
  2014年   87篇
  2013年   144篇
  2012年   135篇
  2011年   148篇
  2010年   99篇
  2009年   85篇
  2008年   174篇
  2007年   152篇
  2006年   170篇
  2005年   154篇
  2004年   141篇
  2003年   148篇
  2002年   155篇
  2001年   24篇
  2000年   15篇
  1999年   26篇
  1998年   35篇
  1997年   31篇
  1996年   22篇
  1995年   23篇
  1994年   7篇
  1993年   22篇
  1992年   17篇
  1991年   7篇
  1990年   6篇
  1989年   12篇
  1988年   8篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   10篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   12篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1971年   2篇
  1969年   2篇
  1965年   2篇
排序方式: 共有2399条查询结果,搜索用时 745 毫秒
61.
The parabasalian symbionts of lower termite hindgut communities are well-known for their large size and structural complexity. The most complex forms evolved multiple times independently from smaller and simpler flagellates, but we know little of the diversity of these small flagellates or their phylogenetic relationships to more complex lineages. To understand the true diversity of Parabasalia and how their unique cellular complexity arose, more data from smaller and simpler flagellates are needed. Here, we describe two new genera of small-to-intermediate size and complexity, represented by the type species Cthulhu macrofasciculumque and Cthylla microfasciculumque from Prorhinotermes simplex and Reticulitermes virginicus, respectively (both hosts confirmed by DNA barcoding). Both genera have a single anterior nucleus embeded in a robust protruding axostyle, and an anterior bundle flagella (and likely a single posterior flagellum) that emerge slightly subanteriorly and have a distinctive beat pattern. Cthulhu is relatively large and has a distinctive bundle of over 20 flagella whereas Cthylla is smaller, has only 5 anterior flagella and closely resembles several other parababsalian genera. Molecular phylogenies based on small subunit ribosomal RNA (SSU rRNA) show both genera are related to previously unidentified environmental sequences from other termites (possibly from members of the Tricercomitidae), which all branch as sisters to the Hexamastigitae. Altogether, Cthulhu likely represents another independent origin of relatively high cellular complexity within parabasalia, and points to the need for molecular characterization of other key taxa, such as Tricercomitus.  相似文献   
62.

Background

Differences in cytokine/chemokine profiles among patients with neuromyelitis optica (NMO), relapsing remitting multiple sclerosis (RRMS), and primary progressive MS (PPMS), and the relationships of these profiles with clinical and neuroimaging features are unclear. A greater understanding of these profiles may help in differential diagnosis.

Methods/Principal Findings

We measured 27 cytokines/chemokines and growth factors in CSF collected from 20 patients with NMO, 26 with RRMS, nine with PPMS, and 18 with other non-inflammatory neurological diseases (OND) by multiplexed fluorescent bead-based immunoassay. Interleukin (IL)-17A, IL-6, CXCL8 and CXCL10 levels were significantly higher in NMO patients than in OND and RRMS patients at relapse, while granulocyte-colony stimulating factor (G-CSF) and CCL4 levels were significantly higher in NMO patients than in OND patients. In NMO patients, IL-6 and CXCL8 levels were positively correlated with disability and CSF protein concentration while IL-6, CXCL8, G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IFN-γ were positively correlated with CSF neutrophil counts at the time of sample collection. In RRMS patients, IL-6 levels were significantly higher than in OND patients at the relapse phase while CSF cell counts were negatively correlated with the levels of CCL2. Correlation coefficients of cytokines/chemokines in the relapse phase were significantly different in three combinations, IL-6 and GM-CSF, G-CSF and GM-CSF, and GM-CSF and IFN-γ, between RRMS and NMO/NMOSD patients. In PPMS patients, CCL4 and CXCL10 levels were significantly higher than in OND patients.

Conclusions

Our findings suggest distinct cytokine/chemokine alterations in CSF exist among NMO, RRMS and PPMS. In NMO, over-expression of a cluster of Th17- and Th1-related proinflammatory cytokines/chemokines is characteristic, while in PPMS, increased CCL4 and CXCL10 levels may reflect on-going low grade T cell and macrophage/microglia inflammation in the central nervous system. In RRMS, only a mild elevation of proinflammatory cytokines/chemokines was detectable at relapse.  相似文献   
63.
Prolactin-releasing peptide2 (PrRP2) was administered intraperitoneally to male intertidal blenny Rhabdoblennius nitidus, a species with male uniparental care of eggs, to investigate the effect on their feeding activity. A significant inhibitory effect on appetite was observed in the breeding season, but not in the nonbreeding season. These results suggest that PrRP2 and PrRP2 receptors are more active during the breeding season. The presence of a mechanism to inhibit feeding activity while parents take care of their offspring may be important for the success of parental care.  相似文献   
64.
Geleophysic dysplasia (GD) is a rare disorder characterized by severe short stature, short hands and feet, limited joint mobility, skin thickening, characteristic facial features (e.g., a “happy” face), and cardiac valvular disorders that often result in an early death. The genes ADAMTSL2 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif-like 2) and FBN1 (fibrillin 1) were recently identified as causative genes for GD. Here, we describe a 10-year-old Japanese female with GD who was born to non-consanguineous parents. At the age of 11 months, she was referred to our hospital because of very short stature for her age (− 4.4 standard deviations of the age-matched value) and a “happy” face with full cheeks, a shortened nose, hypertelorism, and a long and flat philtrum, characteristic of GD. Her hands and feet were small, her skin was thickened, and her joint mobility was generally limited. She had cardiac valvular disorders and history of recurrent respiratory failure. Mutation analysis revealed no abnormalities in ADAMTSL2. However, analysis of FBN1 revealed a novel heterozygous mutation (c.5161T > T/G) in exon 41, which encodes transforming growth factor-β-binding protein-like domain 5 (TB5). GD is an extremely rare disorder and, to our knowledge, only one case of GD with an FBN1 mutation has been reported in Japan. Similar to the previously reported cases of GD, the mutation in the current patient was located in the TB5 domain, which suggests that abnormalities in this domain of FBN1 are responsible for GD.  相似文献   
65.
66.
67.
We have analyzed the ranging patterns of the Mimikire group (M group) of chimpanzees in the Mahale Mountains National Park, Tanzania. During 16 years, the chimpanzees moved over a total area of 25.2 or 27.4 km2, as estimated by the grid-cell or minimum convex polygon (MCP) methods, respectively. Annually, the M group used an average of 18.4 km2, or approximately 70 %, of the total home-range area. The chimpanzees had used 80 % of their total home range after 5 years and 95 % after 11 years. M group chimpanzees were observed more than half of the time in areas that composed only 15 % of their total home range. Thus, they typically moved over limited areas, visiting other parts of their range only occasionally. On average, the chimpanzees used 7.6 km2 (in MCP) per month. Mean monthly range size was smallest at the end of the rainy season and largest at the end of the dry season, but there was much variability from year to year. The chimpanzees used many of the same areas every year when Saba comorensis fruits were abundant between August and January. In contrast, the chimpanzees used several different areas of their range in June. Here range overlap between years was relatively small. Over the 16 years of the study we found that the M group reduced their use of the northern part of their range and increased their frequency of visits to the eastern mountainous side of their home range. Changes in home-range size correlated positively with the number of adult females but not with the number of adult males. This finding does not support a prediction of the male-defended territory model proposed for some East African chimpanzee unit-groups.  相似文献   
68.
We describe the social relationships of young adult female Japanese macaques (Macaca fuscata) in a free-ranging troop in Arashiyama, Kyoto, Japan, who remained nulliparous beyond the ordinary age of first birth because of contraceptive administration. We observed 12 young nulliparous adult females (6–9 years old) for 270 h and 10 min from 2 February to 5 October 2010. The majority maintained close relationships with their mothers through proximity and grooming, whereas a few had very infrequent social interactions with their mothers. Most had asymmetrical grooming relationships; the grooming they received from unrelated adult females was less than the grooming they gave. Young adult females who had less frequent interactions with their mothers by either proximity or grooming received more grooming from a larger number of unrelated adult females than did those who had more frequent social interactions with their mothers. These results indicate that most young adult females who remained nulliparous beyond the ordinary age of first birth tended to maintain close relationships with their mothers, and their grooming relationships with unrelated adult females were inversely related to the degree of closeness with their mothers.  相似文献   
69.
Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS.  相似文献   
70.
Localization of membrane type I matrix metalloproteinase (MT1-MMP) to the leading edge is thought to be a crucial step during cancer cell invasion. However, its mechanisms and functional impact on cellular invasion have not been clearly defined. In this report, we have identified the MT-LOOP, a loop region in the catalytic domain of MT1-MMP (163PYAYIREG170), as an essential region for MT1-MMP to promote cellular invasion. Deletion of the MT-LOOP effectively inhibited functions of MT1-MMP on the cell surface, including proMMP-2 activation, degradation of gelatin and collagen films, and cellular invasion into a collagen matrix. This is not due to loss of the catalytic function of MT1-MMP but due to inefficient localization of the enzyme to β1-integrin-rich cell adhesion complexes at the plasma membrane. We also found that an antibody that specifically recognizes the MT-LOOP region of MT1-MMP (LOOPAb) inhibited MT1-MMP functions, fully mimicking the phenotype of the MT-LOOP deletion mutant. We therefore propose that the MT-LOOP region is an interface for molecular interactions that mediate enzyme localization to cell adhesion complexes and regulate MT1-MMP functions. Our findings have revealed a novel mechanism regulating MT1-MMP during cellular invasion and have identified the MT-LOOP as a potential exosite target region to develop selective MT1-MMP inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号