首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   19篇
  2023年   6篇
  2022年   6篇
  2021年   21篇
  2020年   10篇
  2019年   13篇
  2018年   10篇
  2017年   8篇
  2016年   12篇
  2015年   25篇
  2014年   23篇
  2013年   29篇
  2012年   19篇
  2011年   11篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   9篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1966年   1篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
61.
BackgroundChronic chagasic cardiomyopathy (CCC), the main clinical sign of Chagas disease, is associated with systemic CD8+ T-cell abnormalities and CD8-enriched myocarditis occurring in an inflammatory milieu. Pentoxifylline (PTX), a phosphodiesterase inhibitor, has immunoregulatory and cardioprotective properties. Here, we tested PTX effects on CD8+ T-cell abnormalities and cardiac alterations using a model of experimental Chagas’ heart disease.Conclusions/SignificancePTX therapy ameliorates critical aspects of CCC and repositioned CD8+ T-cell response towards homeostasis, reinforcing that immunological abnormalities are crucially linked, as cause or effect, to CCC. Therefore, PTX emerges as a candidate to treat the non-beneficial immune deregulation associated with chronic Chagas'' heart disease and to improve prognosis.  相似文献   
62.

Introduction

Rheumatoid arthritis (RA) is a commonly occurring systemic inflammatory auto immune disease and is believed to be associated with genetic factors. The innate immune complement protein Mannose binding lectin (MBL) and their MBL2 genetic variants are associated with different infectious and autoimmune diseases.

Methods

In a Brazilian cohort, we aim to associate the functional role of circulating MBL serum levels and MBL2 variants in clinically classified patients (n = 196) with rheumatoid arthritis including their relatives (n = 200) and ethnicity matched healthy controls (n = 200). MBL serum levels were measured by ELISA and functional MBL2 variants were genotyped by direct sequencing.

Results

The exon1+54 MBL2*B variant was significantly associated with an increased risk and the reconstructed haplotype MBL2*LYPB was associated with RA susceptibility. Circulating serum MBL levels were observed significantly lower in RA patients compared to their relatives and controls. No significant contribution of MBL levels were observed with respect to functional class, age at disease onset, disease duration and/or other clinical parameters such as nodules, secondary Sjögren syndrome, anti-CCP and rheumatoid factor. Differential distribution of serum MBL levels with functional MBL2 variants was observed in respective RA patients and their relatives.

Conclusions

Our results suggest MBL levels as a possible marker for RA susceptibility in a Brazilian population.  相似文献   
63.
Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation. Using yeast two-hybrid screenings we identified several nuclear proteins as STI1 interactors. Overexpression of one of these interactors, PIAS1, seems to be specifically involved in STI1 nuclear retention and in directing STI1 and Hsp90 to specific sub-nuclear regions. PIAS1 and STI1 co-immunoprecipitate and PIAS1 can function as an E3 SUMO ligase for STI. Using mass spectrometry we identified five SUMOylation sites in STI1. A STI1 mutant lacking these five sites is not SUMOylated, but still accumulates in the nucleus in response to increased expression of PIAS1, suggesting the possibility that a direct interaction with PIAS1 could be responsible for STI1 nuclear retention. To test this possibility, we mapped the interaction sites between PIAS1 and STI1 using yeast-two hybrid assays and surface plasmon resonance and found that a large domain in the N-terminal region of STI1 interacts with high affinity with amino acids 450–480 of PIAS1. Knockdown of PIAS1 in astrocytes impairs the accumulation of nuclear STI1 in response to irradiation. Moreover, a PIAS1 mutant lacking the STI1 binding site is unable to increase STI1 nuclear retention. Interestingly, in human glioblastoma multiforme PIAS1 expression is increased and we found a significant correlation between increased PIAS1 expression and STI1 nuclear localization. These experiments provide evidence that direct interaction between STI1 and PIAS1 is involved in the accumulation of nuclear STI1. This retention mechanism could facilitate nuclear chaperone activity.Stress-inducible phosphoprotein I (STI1)1 is a conserved cochaperone protein that assists Hsp90 in managing client proteins, by mediating the transfer of proteins between Hsp70 and Hsp90 (13). STI1 contains several tetratricopeptide-repeat domains (TRP) that can serve as interaction modules with Hsp90 and Hsp70 (4). STI1 helps to drive the sequential steps involved in the Hsp90 chaperone machinery (5) and regulates the ATPase activity of Hsp90 (6, 7). STI1 is also secreted by distinct cells (812), using a noncanonical mechanism involving extracellular vesicles (11). Secreted STI1 can activate multiple signaling pathways in distinct cell types (810, 1318).Elimination of STI1 in yeast sensitizes cells to Hsp90 inhibitors, but it is not by itself lethal (19). STI1 can also be eliminated in C. elegans, although it results in decreased life span (20). In contrast, STI1 mutant mice do not survive E10.5 and present several morphological defects, owing to decreased levels of several Hsp90-client proteins (21). Mouse embryonic fibroblasts obtained from STI1-deficient embryos also fail to thrive and present increased levels of the DNA damage marker γ-H2AX, suggestive of increased cellular stress (21). Hence, in mammals STI1 seems to play additional roles in cellular survival that are not yet fully understood.STI1 is abundantly expressed in the cytoplasm of cells, but can also be found in the Golgi (22), in vesicles and in multivesicular bodies (11). Moreover, this cochaperone has been shown to shuttle between the cytoplasm and the nucleus in cell lines (23). Cellular stress, arrest in G1/S phase of the cell cycle and phosphorylation are factors that seem to regulate STI1 nuclear localization (23, 24). Presumably nuclear STI1 can regulate chaperone activity, but whether it can interact with nuclear proteins is unknown.Previous experiments using cell lines have shown that knockdown of STI1 increases susceptibility of cells to irradiation (25). Whether changes in STI1 levels in primary differentiated cells, such as astrocytes, may affect their response to irradiation stress is unknown. This is of interest, as astrocytes, which can give rise to distinct tumor cells, are highly radioresistant (26). Indeed, astrocytes have a noncanonical DNA damage response (DDR) to irradiation (26). Here we show that STI1 undergoes nuclear translocation in astrocytes after γ-radiation-induced DNA damage. Moreover, astrocytes haploinsufficient for STI1 are more susceptible to cell death induced by irradiation. To understand potential mechanisms involved with STI1 nuclear retention, we have performed yeast-two hybrid screenings to identify STI1 nuclear partners. We identified protein inhibitor of activated STAT (PIAS1) as a direct interactor of STI1 and provide evidence that it acts as a small ubiquitin-like modifier (SUMO) E3 ligase for STI1. We show this interaction is involved with STI1 nuclear retention after irradiation. Interestingly, tissue microarray analysis demonstrated that higher PIAS1 levels are found in glioblastoma multiforme (GBM) when compared with non-neoplastic tissue. Furthermore, we uncovered a positive relationship between increased PIAS1 expression in GBMs and augmented STI1 nuclear localization. Our results reveal a novel mechanism by which increased expression of PIAS1, as observed in GBM, can increase the retention of nuclear STI1, a critical regulator of the chaperone machinery.  相似文献   
64.
In aquatic systems, olfaction plays an important role in acquiring information about the social environment and influences important behaviours in various contexts, including predator avoidance, foraging, aggressive and reproductive behaviour and mate selection. As the presence of diseases might modify individual odour, fish may use the variability in conspecifics’ odours as an indicator of the health status and infectious load of potential mates. Here, female Nile tilapia were tested for their ability to detect infected males and discriminate between bacterial infected and uninfected individuals by means of chemical cues. Females were allowed to choose between the odours of males infected by Aeromonas hydrophila bacteria and uninfected males. The findings show that female Nile tilapia initially showed a preference for infected males in terms of their first choice in a dichotomous choice test, but the total duration of time spent with the stimulus from infected males was not longer than that for the uninfected males. This may indicate that males at early stages of infection, i.e., without advanced clinical signs of infection, emit odours that allow them to enjoy the benefits of socialization when the infection is not yet detected by conspecifics. Thus, in the context of reproduction, males might attract female partners and have some chance of reproducing, before being avoided.  相似文献   
65.
BackgroundParacoccidioidomycosis (PCM) is an endemic disease in Latin America. In immunocompetent hosts, PCM occurs in two main clinical forms: acute and chronic. However, in HIV-infected patients PCM may show up simultaneous manifestations of acute and chronic forms.Case reportWe present the case of a patient diagnosed with HIV who had disseminated skin lesions and generalized lymphadenopathy, as well as respiratory and central nervous system involvement. The PCM diagnosis was confirmed by direct KOH examination, double immunodiffusion and the isolation of the fungus in samples of an abscess in the subcostal region. The isolate was identified as Paracoccidioides brasiliensis S1 by species-specific PCR using primers for protein-coding gene GP43 (exon 2) followed by PCR-RFLP of the alpha-tubulin gene.ConclusionsThere are few data in literature reporting species-specific molecular identification of Paracoccidioides in HIV/PCM patients. Therefore, this case report may contribute to improve the knowledge about this severe disease, its causative cryptic species, and its consequences to patients.  相似文献   
66.
Periodontal ligament (PDL) cells convert the orthodontic forces into biological responses by secreting signaling molecules to induce modeling of alveolar bone and tooth movement. Beta-catenin pathway is activated in response to mechanical loading in PDL cells. The upstream signaling pathways activated by mechanical loading resulting in the activation of β-catenin pathway through Wnt-independent mechanism remains to be characterized. We hypothesized that mechanical loading induces activation of β-catenin signaling by mechanisms that dependent on focal adhesion kinase (FAK) and nitric oxide (NO). We found that mechanical or pharmacological activation of β-catenin signaling in PDL cells upregulated the expression of β-catenin target genes. Pre-treatment of PDL cells with FAK inhibitor-14 prior to mechanical loading abolished the mechanical loading-induced phosphorylation of Akt and dephosphorylation of β-catenin. PDL cells pre-treated with NO donor or NO inhibitor and subjected to mechanical loading. Western blot analysis showed that the mechanical loading or pre-treatment with NO donor increased the levels of dephosphorylated β-catenin, pAkt, and pGSK-3β. Pre-treatment with NO inhibitor blocked the mechanical loading-induced phosphorylation of Akt and dephosphorylation of β-catenin. These data indicate that mechanical loading-induced β-catenin stabilization in PDL cells involves phosphorylation of Akt by two parallel pathways requiring FAK and NO.  相似文献   
67.
Obesity is a chronic and multifactorial disease, whose prevalence is increasing in many countries. Pharmaceutical strategies for the treatment of obesity include drugs that regulate food intake, thermogenesis, fat absorption, and fat metabolism. Fenproporex is the second most commonly consumed amphetamine-based anorectic worldwide; this drug is rapidly converted in vivo into amphetamine, which is associated with neurotoxicity. In this context, the present study evaluated DNA damage parameters in the peripheral blood of young and adult rats submitted to an acute administration and chronic administration of fenproporex. In the acute administration, both young and adult rats received a single injection of fenproporex (6.25, 12.5 or 25 mg/kg i.p.) or vehicle. In the chronic administration, both young and adult rats received one daily injection of fenproporex (6.25, 12.5, or 25 mg/kg i.p.) or Tween for 14 days. 2 h after the last injection, the rats were killed by decapitation and their peripheral blood removed for evaluation of DNA damage parameters by alkaline comet assay. Our study showed that acute administration of fenproporex in young and adult rats presented higher levels of damage index and frequency in the DNA. However, chronic administration of fenproporex in young and adult rats did not alter the levels of DNA damage in both parameters of comet assay. The present findings showed that acute administration of fenproporex promoted damage in DNA, in both young and adult rats. Our results are consistent with other reports which showed that other amphetamine-derived drugs also caused DNA damage. We suggest that the activation of an efficient DNA repair mechanism may occur after chronic exposition to fenproporex. Our results are consistent with other reports that showed some amphetamine-derived drugs also caused DNA damage.  相似文献   
68.
Most inborn errors of tyrosine catabolism produce hypertyrosinemia. Neurological manifestations are variable and some patients are developmentally normal, while others show different degrees of developmental retardation. Considering that current data do not eliminate the possibility that elevated levels of tyrosine and/or its derivatives may have noxious effects on central nervous system development in some patients, the present study evaluated nerve growth factor (NGF) levels in hippocampus, striatum and posterior cortex of young rats. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal administration of l-tyrosine (500 mg/kg) or saline. Chronic administration consisted of l-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old); the rats were killed 12 h after the last injection. NGF levels were then evaluated. Our findings showed that acute administration of l-tyrosine decreased NGF levels in striatum of 10-day-old rats. In the 30-day-old rats, NGF levels were decreased in hippocampus and posterior cortex. On the other hand, chronic administration of l-tyrosine increased NGF levels in posterior cortex. Decreased NGF may impair growth, differentiation, survival and maintenance of neurons.  相似文献   
69.
The main consequence of oxidative stress is the formation of DNA lesions, which can result in genomic instability and lead to cell death. Guanine is the base that is most susceptible to oxidation, due to its low redox potential, and 8-oxoguanine (8-oxoG) is the most common lesion. These characteristics make 8-oxoG a good cellular biomarker to indicate the extent of oxidative stress. If not repaired, 8-oxoG can pair with adenine and cause a G:C to T:A transversion. When 8-oxoG is inserted during DNA replication, it could generate double-strand breaks, which makes this lesion particularly deleterious. Trypanosoma cruzi needs to address various oxidative stress situations, such as the mammalian intracellular environment and the triatomine insect gut where it replicates. We focused on the MutT enzyme, which is responsible for removing 8-oxoG from the nucleotide pool. To investigate the importance of 8-oxoG during parasite infection of mammalian cells, we characterized the MutT gene in T. cruzi (TcMTH) and generated T. cruzi parasites heterologously expressing Escherichia coli MutT or overexpressing the TcMTH enzyme. In the epimastigote form, the recombinant and wild-type parasites displayed similar growth in normal conditions, but the MutT-expressing cells were more resistant to hydrogen peroxide treatment. The recombinant parasite also displayed significantly increased growth after 48 hours of infection in fibroblasts and macrophages when compared to wild-type cells, as well as increased parasitemia in Swiss mice. In addition, we demonstrated, using western blotting experiments, that MutT heterologous expression can influence the parasite antioxidant enzyme protein levels. These results indicate the importance of the 8-oxoG repair system for cell viability.  相似文献   
70.
Metagenomics has been widely employed for discovery of new enzymes and pathways to conversion of lignocellulosic biomass to fuels and chemicals. In this context, the present study reports the isolation, recombinant expression, biochemical and structural characterization of a novel endoxylanase family GH10 (SCXyl) identified from sugarcane soil metagenome. The recombinant SCXyl was highly active against xylan from beechwood and showed optimal enzyme activity at pH 6,0 and 45°C. The crystal structure was solved at 2.75 Å resolution, revealing the classical (β/α)8-barrel fold with a conserved active-site pocket and an inherent flexibility of the Trp281-Arg291 loop that can adopt distinct conformational states depending on substrate binding. The capillary electrophoresis analysis of degradation products evidenced that the enzyme displays unusual capacity to degrade small xylooligosaccharides, such as xylotriose, which is consistent to the hydrophobic contacts at the +1 subsite and low-binding energies of subsites that are distant from the site of hydrolysis. The main reaction products from xylan polymers and phosphoric acid-pretreated sugarcane bagasse (PASB) were xylooligosaccharides, but, after a longer incubation time, xylobiose and xylose were also formed. Moreover, the use of SCXyl as pre-treatment step of PASB, prior to the addition of commercial cellulolytic cocktail, significantly enhanced the saccharification process. All these characteristics demonstrate the advantageous application of this enzyme in several biotechnological processes in food and feed industry and also in the enzymatic pretreatment of biomass for feedstock and ethanol production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号