首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5247篇
  免费   431篇
  国内免费   1篇
  2023年   23篇
  2022年   23篇
  2021年   132篇
  2020年   78篇
  2019年   97篇
  2018年   142篇
  2017年   108篇
  2016年   190篇
  2015年   267篇
  2014年   278篇
  2013年   391篇
  2012年   438篇
  2011年   481篇
  2010年   294篇
  2009年   259篇
  2008年   306篇
  2007年   353篇
  2006年   294篇
  2005年   261篇
  2004年   267篇
  2003年   248篇
  2002年   199篇
  2001年   48篇
  2000年   37篇
  1999年   46篇
  1998年   53篇
  1997年   42篇
  1996年   36篇
  1995年   33篇
  1994年   22篇
  1993年   18篇
  1992年   21篇
  1991年   19篇
  1990年   21篇
  1989年   14篇
  1988年   13篇
  1987年   9篇
  1985年   7篇
  1984年   7篇
  1983年   8篇
  1982年   8篇
  1981年   10篇
  1979年   4篇
  1978年   6篇
  1976年   5篇
  1975年   5篇
  1973年   5篇
  1972年   4篇
  1971年   6篇
  1935年   4篇
排序方式: 共有5679条查询结果,搜索用时 341 毫秒
101.
102.
The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD+ to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom.  相似文献   
103.
BackgroundA multicenter study was conducted. A panel containing DNA from Histoplasma capsulatum, as well as negative and cross-reaction controls, was sent to five different laboratories, members of the MICOMOL network from CYTED Program.AimsThe objective was to assess the accuracy of different PCR protocols to detect H. capsulatum DNA.MethodsSeven different PCR protocols were tested. They were based on PCR techniques and used unicopy and multicopy targets.ResultsMost of these protocols (4/7) were able to detect the smallest amounts of fungal DNA (102 fg/μl). Overall sensitivity was 86% and specificity was 100%. The protocol based on a unicopy target (SCAR220) presented lower sensitivity (43%) but 100% specificity. The real-time protocols tested were highly reproducible, sensitive, and specific. Neither false positives nor cross-reactions were detected in any protocol.ConclusionsAll laboratories were able to amplify H. capsulatum DNA, and real-time PCR seems to be a promising tool to efficiently detect this pathogen in clinical samples.  相似文献   
104.
The main objective of this work was to evaluate arsenic effects on metallothionein (MT) induction by exposing a freshwater Asiatic clam (Corbicula fluminea) to different concentrations of this metalloid. The presence of MT-like proteins was detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis and compared with a standard rabbit MT. In addition, the polarographic response showed good correspondence between standard MT and MT-like curves from C. fluminea, allowing MT quantification. The results show that clams exposed to different concentrations of arsenic are able to induce significant levels of MTs. Although variability was found in MT induction, significant differences in MT levels were found after 28 days of exposure in all treatments in comparison with the controls, suggesting that exposure to arsenic induced MT-like proteins in C. fluminea.  相似文献   
105.
106.
Fatty acid β-oxidation may occur in both mitochondria and peroxisomes. While peroxisomes oxidize specific carboxylic acids such as very long-chain fatty acids, branched-chain fatty acids, bile acids, and fatty dicarboxylic acids, mitochondria oxidize long-, medium-, and short-chain fatty acids. Oxidation of long-chain substrates requires the carnitine shuttle for mitochondrial access but medium-chain fatty acid oxidation is generally considered carnitine-independent. Using control and carnitine palmitoyltransferase 2 (CPT2)- and carnitine/acylcarnitine translocase (CACT)-deficient human fibroblasts, we investigated the oxidation of lauric acid (C12:0). Measurement of the acylcarnitine profile in the extracellular medium revealed significantly elevated levels of extracellular C10- and C12-carnitine in CPT2- and CACT-deficient fibroblasts. The accumulation of C12-carnitine indicates that lauric acid also uses the carnitine shuttle to access mitochondria. Moreover, the accumulation of extracellular C10-carnitine in CPT2- and CACT-deficient cells suggests an extramitochondrial pathway for the oxidation of lauric acid. Indeed, in the absence of peroxisomes C10-carnitine is not produced, proving that this intermediate is a product of peroxisomal β-oxidation. In conclusion, when the carnitine shuttle is impaired lauric acid is partly oxidized in peroxisomes. This peroxisomal oxidation could be a compensatory mechanism to metabolize straight medium- and long-chain fatty acids, especially in cases of mitochondrial fatty acid β-oxidation deficiency or overload.  相似文献   
107.
The common bean (Phaseolus vulgaris L.) is the main source of protein and an important source of minerals in several countries around the world. Angular leaf spot, caused by the fungus Pseudocercospora griseola, is one of the major diseases of the common bean. In this work, we used two-dimensional gel electrophoresis and mass spectrometry to analyze alterations in the proteome of common bean leaves challenged with an incompatible race of P. griseola. Twenty-three differentially expressed proteins were detected in leaves of cultivar AND 277 collected at 12, 24 and 48 h after inoculation. The proteins were digested with trypsin and submitted to MALDI-TOF/TOF and MicrOTOF-Q electrospray mass spectrometry. Nineteen of them were identified upon MS/MS fragmentation. Most of these proteins are involved with amino acid metabolism, terpenoid metabolism, phenylpropanoid biosynthesis, antioxidant systems, vitamin and cofactor metabolism, plant–pathogen interaction, carbohydrate metabolism, photosynthesis, or genetic information processing, showing that the interaction in this pathosystem affects different genes from various metabolic pathways and processes.  相似文献   
108.
109.

Motivation

Array-CGH can be used to determine DNA copy number, imbalances in which are a fundamental factor in the genesis and progression of tumors. The discovery of classes with similar patterns of array-CGH profiles therefore adds to our understanding of cancer and the treatment of patients. Various input data representations for array-CGH, dissimilarity measures between tumor samples and clustering algorithms may be used for this purpose. The choice between procedures is often difficult. An evaluation procedure is therefore required to select the best class discovery method (combination of one input data representation, one dissimilarity measure and one clustering algorithm) for array-CGH. Robustness of the resulting classes is a common requirement, but no stability-based comparison of class discovery methods for array-CGH profiles has ever been reported.

Results

We applied several class discovery methods and evaluated the stability of their solutions, with a modified version of Bertoni''s -based test [1]. Our version relaxes the assumption of independency required by original Bertoni''s -based test. We conclude that Minimal Regions of alteration (a concept introduced by [2]) for input data representation, sim [3] or agree [4] for dissimilarity measure and the use of average group distance in the clustering algorithm produce the most robust classes of array-CGH profiles.

Availability

The software is available from http://bioinfo.curie.fr/projects/cgh-clustering. It has also been partly integrated into "Visualization and analysis of array-CGH"(VAMP)[5]. The data sets used are publicly available from ACTuDB [6].  相似文献   
110.
With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号