首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   27篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   10篇
  2019年   9篇
  2018年   13篇
  2017年   7篇
  2016年   12篇
  2015年   18篇
  2014年   19篇
  2013年   18篇
  2012年   23篇
  2011年   12篇
  2010年   17篇
  2009年   7篇
  2008年   17篇
  2007年   11篇
  2006年   11篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1981年   3篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
  1959年   1篇
  1957年   1篇
  1951年   1篇
  1947年   1篇
  1942年   1篇
  1940年   1篇
  1939年   1篇
排序方式: 共有316条查询结果,搜索用时 578 毫秒
61.
Endothelial nitric oxide synthase (eNOS) is the primary enzyme that produces nitric oxide (NO), which plays an important role in blood vessel relaxation. eNOS activation is stimulated by various mechanical forces, such as shear stress. Several studies have shown that local cooling of the human finger causes strong vasoconstriction, followed after several minutes by cold-induced vasodilation (CIVD). However, the role played by endothelial cells (ECs) in blood vessel regulation in respond to cold temperatures is not fully understood. In this study, we found that low temperature alone does not significantly increase or decrease eNOS activation in ECs. We further found that the combination of shear stress with temperature change leads to a significant increase in eNOS activation at 37 °C and 28 °C, and a decrease at 4 °C. These results show that ECs play an important role in blood vessel regulation under shear stress and low temperature.  相似文献   
62.
Nitric oxide (NO) is emerging as an important regulatory player in the Rhizobium-legume symbiosis, but its biological role in nodule functioning is still far from being understood. To unravel the signal transduction cascade and ultimately NO function, it is necessary to identify its molecular targets. This study provides evidence that glutamine synthetase (GS), a key enzyme for root nodule metabolism, is a molecular target of NO in root nodules of Medicago truncatula, being regulated by tyrosine (Tyr) nitration in relation to active nitrogen fixation. In vitro studies, using purified recombinant enzymes produced in Escherichia coli, demonstrated that the M. truncatula nodule GS isoenzyme (MtGS1a) is subjected to NO-mediated inactivation through Tyr nitration and identified Tyr-167 as the regulatory nitration site crucial for enzyme inactivation. Using a sandwich enzyme-linked immunosorbent assay, it is shown that GS is nitrated in planta and that its nitration status changes in relation to active nitrogen fixation. In ineffective nodules and in nodules fed with nitrate, two conditions in which nitrogen fixation is impaired and GS activity is reduced, a significant increase in nodule GS nitration levels was observed. Furthermore, treatment of root nodules with the NO donor sodium nitroprusside resulted in increased in vivo GS nitration accompanied by a reduction in GS activity. Our results support a role of NO in the regulation of nitrogen metabolism in root nodules and places GS as an important player in the process. We propose that the NO-mediated GS posttranslational inactivation is related to metabolite channeling to boost the nodule antioxidant defenses in response to NO.  相似文献   
63.
Chilling injury (CI) is associated with the degradation of membrane integrity which can be aligned to phenolic oxidation activated by polyphenol oxidase (PPO) and peroxidase (POD), enzymes responsible for tissue browning. Phenylalanine ammonia-lyase (PAL) is a further enzyme prominent in the phenolic metabolism that is involved in acclimation against chilling stress. It was hypothesized that treatment with methyl jasmonate (MJ) and salicylic acid (SA) may enhance chilling tolerance in lemon fruit by increasing the synthesis of total phenolics and PAL by activating the key enzyme regulating the shikimic acid pathway whilst inhibiting the activity of POD and PPO. Lemon fruit were treated with 10 μM MJ, 2 mM SA or 10 μM MJ plus 2 mM SA, waxed, stored at −0.5, 2 or 4.5 °C for up to 28 days plus 7 days at 23 °C. Membrane integrity was studied by investigating membrane permeability and the degree of membrane lipid peroxidation in lemon flavedo following cold storage. The 10 μM MJ plus 2 mM SA treatment was most effective in enhancing chilling tolerance of lemon fruit, significantly reducing chilling-induced membrane permeability and membrane lipid peroxidation of lemon flavedo tissue. This treatment also increased total phenolics and PAL activity in such tissue while inhibiting POD activity, the latter possibly contributing to the delay of CI manifestation. PPO activity was found to be a poor biochemical marker of CI. Treatment with 10 μM MJ plus 2 mM SA resulted in an alteration of the phenolic metabolism, enhancing chilling tolerance, possibly through increased production of total phenolics and the activation of PAL and inhibition of POD.  相似文献   
64.
Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium–proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes.  相似文献   
65.
Centromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes, CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is reestablished on chromatin during diplotene of meiosis I. Here, we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but then its presence becomes dispensable for centromere maintenance during development. Worms homozygous for a CENP-A tail deletion maintain functional centromeres during development but give rise to inviable offspring because they fail to reestablish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2 and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.

This study of the nematode Caenorhabditis elegans shows that centromere identity is set in the maternal germ line and passed on to the progeny via an epigenetic mechanism that requires the N-terminal tail of the centromeric histone H3 variant CENP-A.  相似文献   
66.

Background

Long chain polyunsaturated fatty acids (LCPUFAs) including docosahexaenoic acid and arachidonic acid are suspected to play a key role in the pathogenesis of diabetes. LCPUFAs are known to be preferentially concentrated in specific phospholipids termed as plasmalogens. This study was aimed to highlight potential changes in the metabolism of phospholipids, and particularly plasmalogens, and LCPUFAs at various stages of diabetic retinopathy in humans.

Methodology and Principal Findings

We performed lipidomic analyses on red blood cell membranes from controls and mainly type 2 diabetes mellitus patients with or without retinopathy. The fatty acid composition of erythrocytes was determined by gas chromatography and the phospholipid structure was determined by liquid chromatography equipped with an electrospray ionisation source and coupled with a tandem mass spectrometer (LC-ESI-MS/MS). A significant decrease in levels of docosahexaenoic acid and arachidonic acid in erythrocytes of diabetic patients with or without retinopathy was observed. The origin of this decrease was a loss of phosphatidyl-ethanolamine phospholipids esterified with these LCPUFAs. In diabetic patients without retinopathy, this change was balanced by an increase in the levels of several phosphatidyl-choline species. No influence of diabetes nor of diabetic retinopathy was observed on the concentrations of plasmalogen-type phospholipids.

Conclusions and Significance

Diabetes and diabetic retinopathy were associated with a reduction of erythrocyte LCPUFAs in phosphatidyl-ethanolamines. The increase of the amounts of phosphatidyl-choline species in erythrocytes of diabetic patients without diabetic retinopathy might be a compensatory mechanism for the loss of LC-PUFA-rich phosphatidyl-ethanolamines.  相似文献   
67.
Oxidative protein damage in plasma of type 2 diabetic patients.   总被引:6,自引:0,他引:6  
In this study, we evaluated protein oxidation in 84 patients with Type 2 diabetes with no complications and in 61 healthy volunteers who formed the control group, whose ages matched those of the patients. We determined plasma carbonyl and plasma thiol levels as markers of oxidative protein damage and erythrocyte glutathione, plasma ceruloplasmin and transferrin as markers of free radical scavengers. The concentrations (mean +/- SD) of both of plasma carbonyl (1.24 +/- 0.46 vs. 0.72 +/- 0.17 nmole/mg protein; p < 0.0001) and lipid hydroperoxides (1.8 +/- 0.63 vs. 1.3 +/- 0.21 micromole/l; p < 0.0001) were increased, and the concentration of plasma transferrin (3.85 +/- 0.65 vs. 4.59 +/- 0.79 g/l; p < 0.05) was decreased, respectively, in Type 2 diabetic patients compared with those of the controls. There were no significant differences in the concentrations of plasma thiol (0.0064 +/- 0.001 vs. 0.0068 +/- 0.001 micromole/mg protein), erythrocyte glutathione (2.54 +/- 0.57 vs. 2.65 +/- 0.56 mg/g Hb), plasma ceruloplasmin (548 +/- 107.30 vs. 609 +/- 93.34 mg/l) between the patients and the controls. These changes observed in diabetic patients contribute to the imbalance in the redox status of the plasma. We attribute this imbalance to oxidative protein damage in Type 2 diabetic patients clinically free of complications.  相似文献   
68.
69.
The present study aims to investigate the adverse effects of plant growth regulators : gibberellic acid (GA3) and indoleacetic acid (IAA) on testicular functions in rats, and extends to investigate the possible protective role of grape seed extract, proanthocyanidin (PAC). Male rats were divided into six groups; control group, PAC, GA3, IAA, GA3 + PAC and IAA + PAC groups. The data showed that GA3 and IAA caused significant increase in total lipids, total cholesterol, triglycerides, phospholipids and low-density-lipoprotein cholesterol in the serum, concomitant with a significant decrease in high-density-lipoprotein cholesterol, total protein, and testosterone levels. In addition, there was significant decrease in the activity of alkaline phosphatase, acid phosphatase, and gamma-glutamyl transferase. A significant decrease was detected also in epididymyal fructose along with a significant reduction in sperm count. Testicular lipid peroxidation product and hydrogen peroxide (H2O2) levels were significantly increased. Meanwhile, the total antioxidant capacity, glutathione, sulphahydryl group content, as well as superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activity were significantly decreased. Moreover, there were a number of histopathological testicular changes including Leydig’s cell degeneration, reduction in seminiferous tubule and necrotic symptoms and sperm degeneration in both GA3- and IAA-treated rats. However, an obvious recovery of all the above biochemical and histological testicular disorders was detected when PAC seed extract was supplemented to rats administered with GA3 or IAA indicating its protective effect. Therefore it was concluded that supplementation with PAC had ameliorative effects on those adverse effects of the mentioned plant growth regulators through its natural antioxidant properties.  相似文献   
70.
Electrocorticography (ECoG) has drawn attention as an effective recording approach for brain-machine interfaces (BMI). Previous studies have succeeded in classifying movement intention and predicting hand trajectories from ECoG. Despite such successes, however, there still remains considerable work for the realization of ECoG-based BMIs as neuroprosthetics. We developed a method to predict multiple muscle activities from ECoG measurements. We also verified that ECoG signals are effective for predicting muscle activities in time varying series when performing sequential movements. ECoG signals were band-pass filtered into separate sensorimotor rhythm bands, z-score normalized, and smoothed with a Gaussian filter. We used sparse linear regression to find the best fit between frequency bands of ECoG and electromyographic activity. The best average correlation coefficient and the normalized root-mean-square error were 0.92±0.06 and 0.06±0.10, respectively, in the flexor digitorum profundus finger muscle. The δ (1.5∼4Hz) and γ2 (50∼90Hz) bands contributed significantly more strongly than other frequency bands (P<0.001). These results demonstrate the feasibility of predicting muscle activity from ECoG signals in an online fashion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号