首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   906篇
  免费   130篇
  2021年   12篇
  2019年   5篇
  2018年   11篇
  2017年   11篇
  2016年   9篇
  2015年   31篇
  2014年   38篇
  2013年   44篇
  2012年   59篇
  2011年   62篇
  2010年   45篇
  2009年   36篇
  2008年   56篇
  2007年   52篇
  2006年   55篇
  2005年   49篇
  2004年   57篇
  2003年   51篇
  2002年   58篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   21篇
  1997年   8篇
  1995年   14篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1987年   8篇
  1986年   7篇
  1984年   9篇
  1983年   10篇
  1982年   8篇
  1981年   15篇
  1980年   16篇
  1979年   10篇
  1978年   6篇
  1977年   6篇
  1976年   11篇
  1974年   7篇
  1973年   5篇
  1972年   8篇
  1971年   6篇
  1970年   11篇
  1969年   8篇
  1966年   4篇
  1965年   4篇
  1962年   4篇
排序方式: 共有1036条查询结果,搜索用时 17 毫秒
51.
Replication initiation and replication fork movement in the subtelomeric and telomeric DNA of native Y' telomeres of yeast were analyzed using two-dimensional gel electrophoresis techniques. Replication origins (ARSs) at internal Y' elements were found to fire in early-mid-S phase, while ARSs at the terminal Y' elements were confirmed to fire late. An unfired Y' ARS, an inserted foreign (bacterial) sequence, and, as previously reported, telomeric DNA each were shown to impose a replication fork pause, and pausing is relieved by the Rrm3p helicase. The pause at telomeric sequence TG(1-3) repeats was stronger at the terminal tract than at the internal TG(1-3) sequences located between tandem Y' elements. We show that the telomeric replication fork pause associated with the terminal TG(1-3) tracts begins approximately 100 bp upstream of the telomeric repeat tract sequence. Telomeric pause strength was dependent upon telomere length per se and did not require the presence of a variety of factors implicated in telomere metabolism and/or known to cause telomere shortening. The telomeric replication fork pause was specific to yeast telomeric sequence and was independent of the Sir and Rif proteins, major known components of yeast telomeric heterochromatin.  相似文献   
52.
To investigate the role of Toll-like receptor 2 (TLR2)-mediated signaling in host innate defense and development of Lyme disease, the pathogenicity of Borrelia burgdorferi sensu stricto clinical isolates representing two distinct genotypes (RST1 and RST3A) was assessed in TLR2(-/-) C3H/HeJ mice. All TLR2(-/-) mice infected with a B. burgdorferi RST1 isolate developed severe arthritis. The numbers of spirochetes in heart, joint and ear biopsy specimens were significantly higher in TLR2(-/-) mice than in wild-type mice similarly infected as determined by real-time quantitative polymerase chain reaction. Interestingly, despite the higher spirochete levels in heart tissues, milder carditis was observed in TLR2(-/-) than in wild-type mice infected with this RST1 isolate (P=0.02). By contrast, no positive cultures were obtained from any of the blood and tissue specimens from TLR2(-/-) mice inoculated with two RST3A clinical isolates. The data suggest that there is impaired host innate defense against infection and TLR2-independent killing of B. burgdorferi clinical isolates in TLR2-deficient C3H/HeJ mice.  相似文献   
53.
Sharma P  Varma R  Sarasij RC  Ira  Gousset K  Krishnamoorthy G  Rao M  Mayor S 《Cell》2004,116(4):577-589
Cholesterol and sphingolipid-enriched "rafts" have long been proposed as platforms for the sorting of specific membrane components including glycosyl-phosphatidylinositol-anchored proteins (GPI-APs), however, their existence and physical properties have been controversial. Here, we investigate the size of lipid-dependent organization of GPI-APs in live cells, using homo and hetero-FRET-based experiments, combined with theoretical modeling. These studies reveal an unexpected organization wherein cell surface GPI-APs are present as monomers and a smaller fraction (20%-40%) as nanoscale (<5 nm) cholesterol-sensitive clusters. These clusters are composed of at most four molecules and accommodate diverse GPI-AP species; crosslinking GPI-APs segregates them from preexisting GPI-AP clusters and prevents endocytosis of the crosslinked species via a GPI-AP-selective pinocytic pathway. In conjunction with an analysis of the statistical distribution of the clusters, these observations suggest a mechanism for functional lipid-dependent clustering of GPI-APs.  相似文献   
54.
Much attention has focused on dendritic translational regulation of neuronal signaling and plasticity. For example, long-term memory in adult Drosophila requires Pumilio (Pum), an RNA binding protein that interacts with the RNA binding protein Nanos (Nos) to form a localized translation repression complex essential for anterior-posterior body patterning in early embryogenesis. Whether dendrite morphogenesis requires similar translational regulation is unknown. Here we report that nos and pum control the elaboration of high-order dendritic branches of class III and IV, but not class I and II, dendritic arborization (da) neurons. Analogous to their function in body patterning, nos and pum require each other to control dendrite morphogenesis, a process likely to involve translational regulation of nos itself. The control of dendrite morphogenesis by Nos/Pum, however, does not require hunchback, which is essential for body patterning. Interestingly, Nos protein is localized to RNA granules in the dendrites of da neurons, raising the possibility that the Nos/Pum translation repression complex operates in dendrites. This work serves as an entry point for future studies of dendritic translational control of dendrite morphogenesis.  相似文献   
55.
56.
57.
The macrophage LDL receptor and LDL receptor-related protein (LRP, CD91) mediate the phagocytic-like uptake of atherogenic lipoproteins and apoptotic cells, yet the structural basis of their phagocytic functions is not known. To address this issue, we transfected macrophages with chimeric proteins containing the cytoplasmic tails and transmembrane regions of the LDL receptor or LRP and the ectodomain of CD2, which can bind non-opsonized sheep red blood cells (SRBCs). Macrophages expressing receptors containing the LDL receptor domains were able to bind but not internalize SRBCs. In contrast, macrophages expressing receptors containing the cytoplasmic tail of LRP were able to bind and internalize SRBCs. Chimeras in which the LRP cytoplasmic tail was mutated in two di-leucine motifs and a tyrosine in an NPXYXXL motif were able to endocytose anti-CD2 antibody and bind SRBCs, but SRBC phagocytosis was decreased by 70%. Thus, the phagocytic-like functions of LRP, but not those of the LDL receptor, can be explained by the ability of the LRP cytoplasmic tail to trigger phagocytosis. These findings have important implications for atherogenesis and apoptotic cell clearance and for a fundamental cell biological understanding of how the LDL receptor and LRP function in internalization processes.  相似文献   
58.
Bovine aortic smooth muscle cell (SMC) phenotype can be altered by physical forces. This has been demonstrated by cyclic strain-induced changes in proliferation and alignment. However, the intracellular coupling pathways remain ill defined. In the present study, we examined whether the p38 and S6 kinase pathway were involved in the mitogenic and morphological changes seen in SMCs exposed to cyclic strain. We seeded bovine aortic SMCs on silastic membranes that were deformed with 150-mmHg vacuum. Cyclic strain induced both alignment and proliferation of SMCs. SB202190, a specific inhibitor of p38, hindered SMC alignment, but not proliferation. Rapamycin, a specific inhibitor of the mTOR-S6 kinase pathway, attenuated strain-induced proliferation, but not alignment. Peak activation of p38 and S6 kinase was 351 +/- 76.9% at 5 min and 363 +/- 56.2% at 60 min compared with static control, respectively (P < 0.05). The results suggest that strain-induced SMC alignment is dependent on activation of p38, but not S6 kinase. Strain induced SMC proliferation is S6 kinase, but not p38 activation, dependent.  相似文献   
59.
60.
Escherichia coli DnaG primase is a single-stranded DNA-dependent RNA polymerase. Primase catalyzes the synthesis of a short RNA primer to initiate DNA replication at the origin and to initiate Okazaki fragment synthesis for synthesis of the lagging strand. Primase activity is greatly stimulated through its interaction with DnaB helicase. Here we report a 96-well homogeneous scintillation proximity assay (SPA) for the study of DnaB-stimulated E. coli primase activity and the identification of E. coli primase inhibitors. The assay uses an adaptation of the general priming reaction by employing DnaG primase, DnaB helicase, and ribonucleotidetriphosphates (incorporation of [(3)H]CTP) for in vitro primer synthesis on single-stranded oligonucleotide and M13mp18 DNA templates. The primase product is captured by polyvinyl toluene-polyethyleneimine-coated SPA beads and quantified by counting by beta-scintography. In the absence of helicase as a cofactor, primer synthesis is reduced by 85%. The primase assay was used for screening libraries of compounds previously identified as possessing antimicrobial activities. Primase inhibitory compounds were then classified as direct primase inhibitors or mixed primase/helicase inhibitors by further evaluation in a specific assay for DnaB helicase activity. By this approach, specific primase inhibitors could be identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号