首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   900篇
  免费   130篇
  2021年   11篇
  2019年   5篇
  2018年   11篇
  2017年   11篇
  2016年   9篇
  2015年   31篇
  2014年   38篇
  2013年   44篇
  2012年   59篇
  2011年   62篇
  2010年   45篇
  2009年   36篇
  2008年   54篇
  2007年   51篇
  2006年   55篇
  2005年   49篇
  2004年   57篇
  2003年   51篇
  2002年   58篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   21篇
  1997年   8篇
  1995年   14篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1987年   8篇
  1986年   7篇
  1984年   9篇
  1983年   10篇
  1982年   8篇
  1981年   15篇
  1980年   16篇
  1979年   10篇
  1978年   6篇
  1977年   6篇
  1976年   11篇
  1974年   7篇
  1973年   5篇
  1972年   8篇
  1971年   6篇
  1970年   11篇
  1969年   8篇
  1966年   4篇
  1965年   4篇
  1962年   4篇
排序方式: 共有1030条查询结果,搜索用时 46 毫秒
91.
Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods.Methods for genome editing in plant cells have fallen behind the remarkable progress made in whole-genome sequencing projects. The availability of reliable and efficient methods for genome editing would foster gene discovery and functional gene analyses in model plants and the introduction of novel traits in agriculturally important species (Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009). Genome editing in various species is typically achieved by integrating foreign DNA molecules into the target genome by homologous recombination (HR). Genome editing by HR is routine in yeast (Saccharomyces cerevisiae) cells (Scherer and Davis, 1979) and has been adapted for other species, including Drosophila, human cell lines, various fungal species, and mouse embryonic stem cells (Baribault and Kemler, 1989; Venken and Bellen, 2005; Porteus, 2007; Hall et al., 2009; Laible and Alonso-González, 2009; Tenzen et al., 2009). In plants, however, foreign DNA molecules, which are typically delivered by direct gene-transfer methods (e.g. Agrobacterium and microbombardment of plasmid DNA), often integrate into the target cell genome via nonhomologous end joining (NHEJ) and not HR (Ray and Langer, 2002; Britt and May, 2003).Various methods have been developed to indentify and select for rare site-specific foreign DNA integration events or to enhance the rate of HR-mediated DNA integration in plant cells. Novel T-DNA molecules designed to support strong positive- and negative-selection schemes (e.g. Thykjaer et al., 1997; Terada et al., 2002), altering the plant DNA-repair machinery by expressing yeast chromatin remodeling protein (Shaked et al., 2005), and PCR screening of large numbers of transgenic plants (Kempin et al., 1997; Hanin et al., 2001) are just a few of the experimental approaches used to achieve HR-mediated gene targeting in plant species. While successful, these approaches, and others, have resulted in only a limited number of reports describing the successful implementation of HR-mediated gene targeting of native and transgenic sequences in plant cells (for review, see Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009; Weinthal et al., 2010).HR-mediated gene targeting can potentially be enhanced by the induction of genomic double-strand breaks (DSBs). In their pioneering studies, Puchta et al. (1993, 1996) showed that DSB induction by the naturally occurring rare-cutting restriction enzyme I-SceI leads to enhanced HR-mediated DNA repair in plants. Expression of I-SceI and another rare-cutting restriction enzyme (I-CeuI) also led to efficient NHEJ-mediated site-specific mutagenesis and integration of foreign DNA molecules in plants (Salomon and Puchta, 1998; Chilton and Que, 2003; Tzfira et al., 2003). Naturally occurring rare-cutting restriction enzymes thus hold great promise as a tool for genome editing in plant cells (Carroll, 2004; Pâques and Duchateau, 2007). However, their wide application is hindered by the tedious and next to impossible reengineering of such enzymes for novel DNA-target specificities (Pâques and Duchateau, 2007).A viable alternative to the use of rare-cutting restriction enzymes is the zinc finger nucleases (ZFNs), which have been used for genome editing in a wide range of eukaryotic species, including plants (e.g. Bibikova et al., 2001; Porteus and Baltimore, 2003; Lloyd et al., 2005; Urnov et al., 2005; Wright et al., 2005; Beumer et al., 2006; Moehle et al., 2007; Santiago et al., 2008; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). Here too, ZFNs have been used to enhance DNA integration via HR (e.g. Shukla et al., 2009; Townsend et al., 2009) and as an efficient tool for the induction of site-specific mutagenesis (e.g. Lloyd et al., 2005; Zhang et al., 2010) in plant species. The latter is more efficient and simpler to implement in plants as it does not require codelivery of both ZFN-expressing and donor DNA molecules and it relies on NHEJ—the dominant DNA-repair machinery in most plant species (Ray and Langer, 2002; Britt and May, 2003).ZFNs are artificial restriction enzymes composed of a fusion between an artificial Cys2His2 zinc-finger protein DNA-binding domain and the cleavage domain of the FokI endonuclease. The DNA-binding domain of ZFNs can be engineered to recognize a variety of DNA sequences (for review, see Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). The FokI endonuclease domain functions as a dimer, and digestion of the target DNA requires proper alignment of two ZFN monomers at the target site (Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). Efficient and coordinated expression of both monomers is thus required for the production of DSBs in living cells. Transient ZFN expression, by direct gene delivery, is the method of choice for targeted mutagenesis in human and animal cells (e.g. Urnov et al., 2005; Beumer et al., 2006; Meng et al., 2008). Among the different methods used for high and efficient transient ZFN delivery in animal and human cell lines are plasmid injection (Morton et al., 2006; Foley et al., 2009), direct plasmid transfer (Urnov et al., 2005), the use of integrase-defective lentiviral vectors (Lombardo et al., 2007), and mRNA injection (Takasu et al., 2010).In plant species, however, efficient and strong gene expression is often achieved by stable gene transformation. Both transient and stable ZFN expression have been used in gene-targeting experiments in plants (Lloyd et al., 2005; Wright et al., 2005; Maeder et al., 2008; Cai et al., 2009; de Pater et al., 2009; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). In all cases, direct gene-transformation methods, using polyethylene glycol, silicon carbide whiskers, or Agrobacterium, were deployed. Thus, while mutant plants and tissues could be recovered, potentially without any detectable traces of foreign DNA, such plants were generated using a transgenic approach and are therefore still likely to be classified as transgenic. Furthermore, the recovery of mutants in many cases is also dependent on the ability to regenerate plants from protoplasts, a procedure that has only been successfully applied in a limited number of plant species. Therefore, while ZFN technology is a powerful tool for site-specific mutagenesis, its wider implementation for plant improvement may be somewhat limited, both by its restriction to certain plant species and by legislative restrictions imposed on transgenic plants.Here we describe an alternative to direct gene transfer for ZFN delivery and for the production of mutated plants. Our approach is based on the use of a novel Tobacco rattle virus (TRV)-based expression system, which is capable of systemically infecting its host and spreading into a variety of tissues and cells of intact plants, including developing buds and regenerating tissues. We traced the indirect ZFN delivery in infected plants by activation of a mutated reporter gene and we demonstrate that this approach can be used to recover mutated plants.  相似文献   
92.
The synovial fluid (SF) cells of rheumatoid arthritis (RA) patients express a specific CD44 variant designated CD44vRA. Using a cellular model of this autoimmune disease, we show in this study that the mammalian lectin, galectin-8 (gal-8), is a novel high-affinity ligand of CD44vRA. By affinity chromatography, flow cytometry, and surface plasmon resonance, we demonstrate that gal-8 interacts with a high affinity (K(d), 6 x 10(-9) M) with CD44vRA. We further demonstrate that SF cells from RA patients express and secrete gal-8, to a concentration of 25-65 nM, well within the concentration of gal-8 required to induce apoptosis of SF cells. We further show that not all gal-8 remains freely soluble in the SF and at least part forms triple complexes with CD44 and fibrinogen that can be detected, after fibrinogen immunoprecipitation, with Abs against fibrinogen, gal-8 and CD44. These triple complexes may therefore increase the inflammatory reaction by sequestering the soluble gal-8, thereby reducing its ability to induce apoptosis in the inflammatory cells. Our findings not only shed light on the receptor-ligand relationships between CD44 and gal-8, but also underline the biological significance of these interactions, which may affect the extent of the autoimmune inflammatory response in the SF of RA patients.  相似文献   
93.
This paper investigates the complex dynamics induced by antibody-dependent enhancement (ADE) in multiserotype disease models. ADE is the increase in viral growth rate in the presence of immunity due to a previous infection of a different serotype. The increased viral growth rate is thought to increase the infectivity of the secondary infectious class. In our models, ADE induces the onset of oscillations without external forcing. The oscillations in the infectious classes represent outbreaks of the disease. In this paper, we derive approximations of the ADE parameter needed to induce oscillations and analyze the associated bifurcations that separate the types of oscillations. We then investigate the stability of these dynamics by adding stochastic perturbations to the model. We also present a preliminary analysis of the effect of a single serotype vaccination in the model.  相似文献   
94.
Disease-related research requires a different kind of teamwork, says Ira Mellman. He hopes to find that team at his new home at Genentech.  相似文献   
95.
The three basic cell types in the migrating slug of Dictyostelium discoideum show differential chemotactic response to cyclic AMP (cAMP) and differential sensitivity to suppression of the chemotaxis by ammonia. The values of these parameters indicate a progressive maturation of chemotactic properties during the transdifferentiation of slug cell types. We present a model that explains the localization of the three cell types within the slug based on these chemotactic differences and on the maturation of their chemotactic properties.  相似文献   
96.
Multistrain diseases have multiple distinct coexisting serotypes (strains). For some diseases, such as dengue fever, the serotypes interact by antibody-dependent enhancement (ADE), in which infection with a single serotype is asymptomatic, but contact with a second serotype leads to higher viral load and greater infectivity. We present and analyze a dynamic compartmental model for multiple serotypes exhibiting ADE. Using center manifold techniques, we show how the dynamics rapidly collapses to a lower dimensional system. Using the constructed reduced model, we can explain previously observed synchrony between certain classes of primary and secondary infectives (Schwartz et al. in Phys Rev E 72:066201, 2005). Additionally, we show numerically that the center manifold equations apply even to noisy systems. Both deterministic and stochastic versions of the model enable prediction of asymptomatic individuals that are difficult to track during an epidemic. We also show how this technique may be applicable to other multistrain disease models, such as those with cross-immunity.  相似文献   
97.
Here we report a PCR-based DNA engineering technique for seamless assembly of recombinant molecules from multiple components. We create cloning vector and target molecules flanked with compatible single-stranded (ss) extensions. The vector contains a cassette with two inversely oriented nicking endonuclease sites separated by restriction endonuclease site(s). The spacer sequences between the nicking and restriction sites are tailored to create ss extensions of custom sequence. The vector is then linearized by digestion with nicking and restriction endonucleases. To generate target molecules, a single deoxyuridine (dU) residue is placed 6–10nt away from the 5′-end of each PCR primer. 5′ of dU the primer sequence is compatible either with an ss extension on the vector or with the ss extension of the next-in-line PCR product. After amplification, the dU is excised from the PCR products with the USER enzyme leaving PCR products flanked by 3′ ss extensions. When mixed together, the linearized vector and PCR products directionally assemble into a recombinant molecule through complementary ss extensions. By varying the design of the PCR primers, the protocol is easily adapted to perform one or more simultaneous DNA manipulations such as directional cloning, site-specific mutagenesis, sequence insertion or deletion and sequence assembly.  相似文献   
98.
Lipids in the heart: a source of fuel and a source of toxins   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: How do lipids arrive in the heart and other tissues? This review focuses on new information on pathways of lipid uptake into the heart. RECENT FINDINGS: Fatty acids, the major cardiac fuel, are obtained from either lipoproteins or free fatty acids associated with albumin. The heart is the tissue with the most robust expression of lipoprotein lipase, and recent data attest to the importance of this enzyme in supplying optimal amounts of fatty acids for the heart. Genetic deletion of CD36 also shows that this transporter is important for cardiac uptake of lipids. Retinoid acquisition by the heart involves pathways parallel to those used for fatty acid uptake: a pathway for acquisition of core lipoprotein retinyl ester and another for nonlipoprotein retinol. Dilated lipotoxic cardiomyopathy is the consequence of excess lipid uptake. SUMMARY: Genetic modifications that affect lipid uptake, oxidation, and storage are being exploited to elucidate the pathophysiology of cardiomyopathies and to discover how lipids relate to heart failure in humans with obesity and diabetes mellitus. This information is likely to lead to new diagnostic categories of cardiomyopathy and more pathophysiologically appropriate treatments.  相似文献   
99.
The objective of this study was to determine the prevalence, mutual associations, clinical manifestations, and diagnoses associated with serum autoantibodies, as detected using recently available immunoassays, in patients with autoimmune myositis (AIM). Sera and clinical data were collected from 100 patients with AIM followed longitudinally. Sera were screened cross-sectionally for 21 autoantibodies by multiplex addressable laser bead immunoassay, line blot immunoassay, immunoprecipitation of in vitro translated recombinant protein, protein A assisted immunoprecipitation, and enzyme-linked immunosorbent assay. Diagnoses were determined using the Bohan and Peter classification as well as recently proposed classifications. Relationships between autoantibodies and clinical manifestations were analyzed by multiple logistic regression. One or more autoantibodies encompassing 19 specificities were present in 80% of the patients. The most common autoantibodies were anti-Ro52 (30% of patients), anti-Ku (23%), anti-synthetases (22%), anti-U1RNP (15%), and anti-fibrillarin (14%). In the presence of autoantibodies to Ku, synthetases, U1RNP, fibrillarin, PM-Scl, or scleroderma autoantigens, at least one more autoantibody was detected in the majority of sera and at least two more autoantibodies in over one-third of sera. The largest number of concurrent autoantibodies was six autoantibodies. Overall, 44 distinct combinations of autoantibodies were counted. Most autoantibodies were unrestricted to any AIM diagnostic category. Distinct clinical syndromes and therapeutic responses were associated with anti-Jo-1, anti-fibrillarin, anti-U1RNP, anti-Ro, anti-Ro52, and autoantibodies to scleroderma autoantigens. We conclude that a significant proportion of AIM patients are characterized by complex associations of autoantibodies. Certain myositis autoantibodies are markers for distinct overlap syndromes and predict therapeutic outcomes. The ultimate clinical features, disease course, and response to therapy in a given AIM patient may be linked to the particular set of associated autoantibodies. These results provide a rationale for patient profiling and its application to therapeutics, because it cannot be assumed that the B-cell response is the same even in the majority of patients in a given diagnostic category.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号