首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   1篇
  2023年   3篇
  2021年   4篇
  2020年   2篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   11篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  1996年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
71.
Sancassania polyphyllae (Acari: Acaridae) adult female mites will feed on insect cadavers and infective juveniles (IJs) of entomopathogenic nematodes. Our objective was to determine whether S. polyphyllae has a food preference when offered a choice between tissues of Polyphylla fullo (Coleoptera: Scarabaeidae) or Galleria mellonella (Lepidoptera: Pyralidae), or IJs of Steinernema feltiae (Rhabditida: Steinernematidae) or IJs of Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). When offered a choice between no food and one of the different food sources, P. fullo, G. mellonella or S. feltiae IJs, S. polyphyllae had a significant preference for food sources compared to no food. When it was offered either no food or H. bacteriophora, there was no significant difference in the mite distribution. When offered two different food choices, P. fullo or G. mellonella, P. fullo or S. feltiae, and P. fullo or H. bacteriophora, the mite showed significant preferences for P. fullo larvae. In S. feltiae vs. G. mellonella and S. feltiae vs. H. bacteriophora experiments, S. polyphyllae showed significant a preference for S. feltiae. In three-choice experiments, S. polyphyllae had a preference for P. fullo, followed by S. feltiae, G. mellonella and H. bacteriophora, respectively. Our data confirm, in part, our hypothesis that when offered different food choices, this mite species prefers tissues of its phoretic host, P. fullo over lepidopteran host tissues or living IJs. Based on these laboratory data, H. bacteriophora should be used as a biological control agent against P. fullo over a Steinernema species.  相似文献   
72.
73.
Biodegradability and cellular activity are key performance indicators that should be prioritized for tissue engineering applications. Biopolymer selection, determination of necessary structural properties, and their synergistic interactions play an active role in obtaining the expected biodegradability and biological activity from scaffolds. In this study, it is aimed to produce electrospun webs with improved biocompatibility by blending polycaprolactone (PCL) with polylactic acid (PLA) and poly-l -lactide (PLLA), and examine the effect of biopolymer selection and blend ratio on the biodegradability and cellular activity of surfaces. In this context, fibrous webs are produced from PCL/PLA and PCL/PLLA blends with a weight ratio of 80/20 and 50/50 and pure polymers of PCL, PLA, and PLLA by electrospinning method and subjected to morphological and biological analyses. The biodegradation tests are carried out hydrolytically while the cell viability and cell proliferation analyses are performed with adult human primary dermal fibroblasts and human umbilical endothelial cells (HUVECs). The results show that the fiber diameters of the fabricated webs ranged from 0.747 to 1.685 μm. At the end of the 5th month, it is observed that the biodegradation rates of the webs blended 50% with PLA and PLLA, in comparison to PCL ones, increase from 3.7% to 13.33% and 7.69%, respectively. On the other hand, cell culture results highlight that the addition of 20% PLA and PLLA improves the cellular activity of both cell types, but increased PLA or PLLA ratio in PCL webs has a negative effect as it makes the structure stiff and brittle.  相似文献   
74.
75.
Glucosylation modulates the biological activity of small molecules and frequently leads to their inactivation. The Arabidopsis thaliana glucosyltransferase UGT76B1 is involved in conjugating the stress hormone salicylic acid (SA) as well as isoleucic acid (ILA). Here, we show that UGT76B1 also glucosylates N-hydroxypipecolic acid (NHP), which is synthesized by FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) and activates systemic acquired resistance (SAR). Upon pathogen attack, Arabidopsis leaves generate two distinct NHP hexose conjugates, NHP-O-β-glucoside and NHP glucose ester, whereupon only NHP-O-β-glucoside formation requires a functional SA pathway. The ugt76b1 mutants specifically fail to generate the NHP-O-β-glucoside, and recombinant UGT76B1 synthesizes NHP-O-β-glucoside in vitro in competition with SA and ILA. The loss of UGT76B1 elevates the endogenous levels of NHP, SA, and ILA and establishes a constitutive SAR-like immune status. Introgression of the fmo1 mutant lacking NHP biosynthesis into the ugt76b1 background abolishes this SAR-like resistance. Moreover, overexpression of UGT76B1 in Arabidopsis shifts the NHP and SA pools toward O-β-glucoside formation and abrogates pathogen-induced SAR. Our results further indicate that NHP-triggered immunity is SA-dependent and relies on UGT76B1 as a common metabolic hub. Thereby, UGT76B1-mediated glucosylation controls the levels of active NHP, SA, and ILA in concert to balance the plant immune status.  相似文献   
76.
77.
Süntar  Ipek 《Phytochemistry Reviews》2020,19(5):1199-1209
Phytochemistry Reviews - Ethnopharmacology can be basically defined as “the interdisciplinary scientific exploration of the biologically active agents that are traditionally employed”....  相似文献   
78.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号