首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   8篇
  国内免费   3篇
  2023年   1篇
  2022年   8篇
  2021年   15篇
  2020年   4篇
  2019年   7篇
  2018年   12篇
  2017年   6篇
  2016年   4篇
  2015年   18篇
  2014年   16篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
71.
Matriconditioning improved the performance of pepper, tomato, sweet corn, snap bean, table beet, sugar beet and watermelon seeds in early field plantings at suboptimal temperatures (averaged over 10 d after planting) ranging from 12 to 18 °C. Reduction in the time to 50% (T(50)) emergence in conditioned seeds ranged from 0·6 d in watermelon to 3·3 d in pepper and improvement in emergence from 10% in sugar beet to 30% in table beet. Further improvement in emergence occurred by inclusion of pesticides and/or gibberellin during conditioning. A 4 d conditioning of pepper at 25 °C was superior to 7 d conditioning at 15 °C in seeds germinated at 15 °C on filter paper, but 15 °C conditioning was superior in improving percentage emergence in early field plantings. Tomato seeds conditioned at 15 or 25 °C performed equally well in the field. A 2 d conditioning was superior to 1 d conditioning in improving the performance of supersweet sweet corn cultivars grown in a growth chamber at 10/20 °C. The water uptake rate in the presence of Micro-Cel E during matriconditioning of sweet corn seeds was slower than when the seeds were exposed to the same amount of water in absence of the carrier. Electrolyte leakage was greater in supersweet 'Challenger' sweet corn seeds carrying the sh(2) gene compared to the sugary type sweet corn 'More', and in both cases matriconditioning reduced the leakage. Lettuce seeds matriconditioned for 24 h had higher 1-aminocyclopropane-l-carboxylic acid (ACC) content, developed greater ACC oxidase activity and performed better at 10 °C (germinated earlier and had higher percentage germination) than the untreated seeds. Matriconditioning appears to bring about beneficial physical, physiological and biochemical changes that seemingly improve embryo growth potential and tolerance to low temperatures.  相似文献   
72.
Abiotic stresses are among the major limiting factors for plant growth and crop productivity. Among these, salinity is one of the major risk factors for plant growth and development in arid to semi-arid regions. Cultivation of salt tolerant crop genotypes is one of the imperative approaches to meet the food demand for increasing population. The current experiment was carried out to access the performance of different rice genotypes under salinity stress and Zinc (Zn) sources. Four rice genotypes were grown in a pot experiment and were exposed to salinity stress (7 dS m−1), and Zn (15 mg kg−1 soil) was applied from two sources, ZnSO4 and Zn-EDTA. A control of both salinity and Zn was kept for comparison. Results showed that based on the biomass accumulation and K+/Na+ ratio, KSK-133 and BAS-198 emerged as salt tolerant and salt sensitive, respectively. Similarly, based on the Zn concentration, BAS-2000 was reported as Zn-in-efficient while IR-6 was a Zn-efficient genotype. Our results also revealed that plant growth, relative water content (RWC), physiological attributes including chlorophyll contents, ionic concentrations in straw and grains of all rice genotypes were decreased under salinity stress. However, salt tolerant and Zn-in-efficient rice genotypes showed significantly higher shoot K+ and Zn concentrations under saline conditions. Zinc application significantly alleviates the harmful effects of salinity by improving morpho-physiological attributes and enhancing antioxidant enzyme activities, and the uptake of K and Zn. The beneficial effect of Zn was more pronounced in salt-tolerant and Zn in-efficient rice genotypes as compared with salt-sensitive and Zn-efficient genotypes. In sum, our results confirmed that Zn application increased overall plant’s performance under saline conditions, particularly in Zn in-efficient and tolerant genotypes as compared with salt-sensitive and Zn efficient rice genotypes.  相似文献   
73.
74.
Apolipoprotein H (apoH, protein; APOH, gene) has been implicated as a necessary cofactor for the binding of certain autoimmune antiphospholipid antibodies to anionic phospholipids. APOH exhibits genetically determined structural polymorphism with the occurrence of four alleles. Recently three IgG1k monoclonal antibodies (mAb) to human apoH, designated 3G9, 1B4, and 3D11, have been produced. The mAb 3D11 does not recognize apoH bound to anionic phospholipids in contrast to mAb 3G9 and 1B4, which recognize free and phospholipid-bound apoH. In this investigation we have determined the reactivity of the three mAb with four APOH allele products and the binding ability of these allele products with anionic phospholipids. The mAb 3G9 and 1B4, like the polyclonal anti-apoH, were equally reactive with all four allelic products, but the 3D11 recognized only the APOH *3 allele product. In the 159 APOH *3 carriers tested from five ethnic groups, the reactivity of mAb 3D11 was observed with all the Chinese but none of the African blacks. For the U.S. whites and Polynesians 89% and 75%, respectively, of the APOH *3 allele products were recognized by 3D11, while 87% of the U.S. blacks with this allele had no 3D11 reactivity. These data show that the APOH *3 allele, originally identified as a single entity by the polyclonal anti-apoH, is heterogeneous with at least one distinct variation based on mAb 3D11 reactivity. Our data also demonstrate that the apoH from certain homozygous APOH *3 individuals is unable to bind to anionic phospholipids. Such ethnic-specific apoH variations could play a significant role in the binding properties of autoimmune antiphospholipid antibodies to anionic phospholipids.  相似文献   
75.
Lipoprotein lipase (LPL) plays a crucial role in lipid metabolism by hydrolyzing triglyceride (TG)-rich particles and affecting HDL cholesterol (HDL-C) levels. In this study, the entire LPL gene plus flanking regions were resequenced in individuals with extreme HDL-C/TG levels (n = 95), selected from a population-based sample of 623 US non-Hispanic White (NHW) individuals. A total of 176 sequencing variants were identified, including 28 novel variants. A subset of 64 variants [common tag single nucleotide polymorphisms (tagSNP) and selected rare variants] were genotyped in the total sample, followed by association analyses with major lipid traits. A gene-based association test including all genotyped variants revealed significant association with HDL-C (P = 0.024) and TG (P = 0.006). Our single-site analysis revealed seven independent signals (P < 0.05; r2 < 0.40) with either HDL-C or TG. The most significant association was for the SNP rs295 exerting opposite effects on TG and HDL-C levels with P values of 7.5.10−4 and 0.002, respectively. Our work highlights some common variants and haplotypes in LPL with significant associations with lipid traits; however, the analysis of rare variants using burden tests and SKAT-O method revealed negligible effects on lipid traits. Comprehensive resequencing of LPL in larger samples is warranted to further test the role of rare variants in affecting plasma lipid levels.  相似文献   
76.
77.
We isolated 10 endophytic fungi from the roots of drought stressed soybean cultivar Hwangkeumkong and bioassyed on waito-c rice and soybean seedlings, in order to identify plant growth-promoting fungi. The fungal isolate D-2-1 provided the best result for plant height and biomass promotion as compared to wild type Gibberella fujikuroi. The D-2-1 culture filtrate (CF) was analyzed for the presence of gibberellins (GAs) and it was observed that all physiologically active GAs, especially gibberellic acid, were present in higher amounts (GA1, 0.24 ng/ml; GA3, 8.99 ng/ml; GA4, 2.58 ng/ml and GA7, 1.39 ng/ml) in conjunction with physiologically inactive GA5, GA9, GA15, GA19, and GA24. The fungal isolate D-2-1 was identified as a new strain of Chrysosporium pseudomerdarium through phylogenetic analysis of 18S rDNA sequence. Plant growth promotion and GAs production capacity of genus Chrysosporium have been reported for the first time in this study.  相似文献   
78.

Background

Essentially all knowledge about adult hippocampal neurogenesis in humans still comes from one seminal study by Eriksson et al. in 1998, although several others have provided suggestive findings. But only little information has been available in how far the situation in animal models would reflect the conditions in the adult and aging human brain. We therefore here mapped numerous features associated with adult neurogenesis in rodents in samples from human hippocampus across the entire lifespan. Such data would not offer proof of adult neurogenesis in humans, because it is based on the assumption that humans and rodents share marker expression patterns in adult neurogenesis. Nevertheless, together the data provide valuable information at least about the presence of markers, for which a link to adult neurogenesis might more reasonably be assumed than for others, in the adult human brain and their change with increasing age.

Methods and Findings

In rodents, doublecortin (DCX) is transiently expressed during adult neurogenesis and within the neurogenic niche of the dentate gyrus can serve as a valuable marker. We validated DCX as marker of granule cell development in fetal human tissue and used DCX expression as seed to examine the dentate gyrus for additional neurogenesis-associated features across the lifespan. We studied 54 individuals and detected DCX expression between birth and 100 years of age. Caveats for post-mortem analyses of human tissues apply but all samples were free of signs of ischemia and activated caspase-3. Fourteen markers related to adult hippocampal neurogenesis in rodents were assessed in DCX-positive cells. Total numbers of DCX expressing cells declined exponentially with increasing age, and co-expression of DCX with the other markers decreased. This argued against a non-specific re-appearance of immature markers in specimen from old brains. Early postnatally all 14 markers were co-expressed in DCX-positive cells. Until 30 to 40 years of age, for example, an overlap of DCX with Ki67, Mcm2, Sox2, Nestin, Prox1, PSA-NCAM, Calretinin, NeuN, and others was detected, and some key markers (Nestin, Sox2, Prox1) remained co-expressed into oldest age.

Conclusions

Our data suggest that in the adult human hippocampus neurogenesis-associated features that have been identified in rodents show patterns, as well as qualitative and quantitative age-related changes, that are similar to the course of adult hippocampal neurogenesis in rodents. Consequently, although further validation as well as the application of independent methodology (e.g. electron microscopy and cell culture work) is desirable, our data will help to devise the framework for specific research on cellular plasticity in the aging human hippocampus.  相似文献   
79.
Hamayun M  Khan SA  Khan AL  Rehman G  Kim YH  Iqbal I  Hussain J  Sohn EY  Lee IJ 《Mycologia》2010,102(5):989-995
Gibberellin (GA) production by soil fungi has received little attention, although substantial work has been carried out on other aspects of plant growth promoting fungi (PGPF). In our studies we investigated GA production and growth-promoting capacity of a novel fungal strain isolated from the roots of soil-grown cucumber. Pure cultures of 19 endophytic fungi were tested for shoot length promotion of Waito-C rice to identify the GA production capacity of these fungal isolates. Isolate MH-6 significantly increased shoot length (12.9 cm) of Waito-C, in comparison to control treatments. Bioassay with culture filtrate (CF) of MH-6 also significantly promoted growth attributes of cucumber plants. Analysis of MH-6 CF showed the presence of physiologically active (GA1, 1.97 ng/mL; GA3, 5.18 ng/mL; GA4, 13.35 ng/mL and GA7, 2.4 ng/ mL) in conjunction with physiologically inactive (GA9 [0.69 ng/mL], GA12 [0.24 ng/mL], GA15 [0.68 ng/ mL, GA19 [1.94 ng/mL and GA20 [0.78 ng/mL]) gibberellins. The CF of MH-6 produced greater amounts of GA3, GA4, GA7 and GA19 than wild type Fusarium fujikuroi, a fungus known for high production of GA. The fungal isolate MH-6 was identified as a new strain of Cladosporium sp. on the basis of sequence homology (99%) and phylogenetic analysis of 18S rDNA sequence.  相似文献   
80.
Throughout the savanna biome, woody vegetation is cleared to increase productivity of herbaceous pasture. While clearing can result in increased pasture production of semi-arid dystrophic savannas in the short term, it is uncertain whether production is sustained in the long term. There is insufficient knowledge of how clearing affects soil nutrient and organic carbon (SOC) stocks. Using cleared-uncleared site pairs, we evaluated techniques for time-integrated assessment of nutrient and carbon relations in Australian savanna. Short-term in situ resin incubation showed that soil at cleared sites had a higher time-integrated availability of ammonium and nitrate, indicating that nitrogen (N) may turn over faster and/or is taken up slower at cleared sites than uncleared savanna. Nitrate and ammonium availability was approximately 2-fold higher in spring than in summer, likely due to greater uptake and/or loss of nitrate during summer rains. Nitrate was a prominent N source for evergreen trees, especially before summer rain, pointing to a role of trees as permanent N sinks. Stable isotope signatures of soil and vegetation indicate that N input occurs via N2 fixing microbiotic crusts and Acacia species. 30 years after clearing, SOC contained more C4 grass-derived carbon than uncleared savanna, but this shift in C source was not associated with the net C gain often observed in grasslands. Interactions between altered nutrient and C relations and composition of the understorey should be assessed in context of introduced buffelgrass (Cenchrus ciliaris) which had higher macronutrient concentrations than native grasses. Heterogeneity of the studied soils highlights the need for replication at several spatial scales to infer long-term dynamics with space-for-time chronosequences. We conclude that the techniques presented here are useful for gaining knowledge of the biogeochemical processes governing savannas and the systems that result from clearing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号