首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1059篇
  免费   79篇
  2023年   6篇
  2022年   12篇
  2021年   27篇
  2020年   19篇
  2019年   28篇
  2018年   44篇
  2017年   34篇
  2016年   55篇
  2015年   66篇
  2014年   84篇
  2013年   79篇
  2012年   122篇
  2011年   87篇
  2010年   59篇
  2009年   47篇
  2008年   77篇
  2007年   49篇
  2006年   47篇
  2005年   42篇
  2004年   51篇
  2003年   39篇
  2002年   30篇
  2001年   5篇
  2000年   4篇
  1999年   7篇
  1998年   5篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1974年   1篇
排序方式: 共有1138条查询结果,搜索用时 578 毫秒
51.
52.
Despite the increasing interest in twin studies and the stunning amount of research on face recognition, the ability of adult identical twins to discriminate their own faces from those of their co-twins has been scarcely investigated. One’s own face is the most distinctive feature of the bodily self, and people typically show a clear advantage in recognizing their own face even more than other very familiar identities. Given the very high level of resemblance of their faces, monozygotic twins represent a unique model for exploring self-face processing. Herein we examined the ability of monozygotic twins to distinguish their own face from the face of their co-twin and of a highly familiar individual. Results show that twins equally recognize their own face and their twin’s face. This lack of self-face advantage was negatively predicted by how much they felt physically similar to their co-twin and by their anxious or avoidant attachment style. We speculate that in monozygotic twins, the visual representation of the self-face overlaps with that of the co-twin. Thus, to distinguish the self from the co-twin, monozygotic twins have to rely much more than control participants on the multisensory integration processes upon which the sense of bodily self is based. Moreover, in keeping with the notion that attachment style influences perception of self and significant others, we propose that the observed self/co-twin confusion may depend upon insecure attachment.  相似文献   
53.
In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism.  相似文献   
54.
The Z deficiency in α1-antitrypsin (A1ATD) is an under-recognized condition. Alpha1-antitrypsin (A1AT) is the main protein in the α1-globulin fraction of serum protein electrophoresis (SPE); however, evaluation of the α1-globulin protein fraction has received very little attention. Serum Z-type A1AT manifests in polymeric forms, but their interference with quantitative immunoassays has not been reported. Here, 214 894 samples were evaluated by SPE at the G. Fracastoro Hospital of Verona, Italy. Patients with an A1AT level ≤ 0.92 g/L were recalled to complete A1ATD diagnosis. In parallel, to qualitatively and quantitatively characterize A1AT, sera samples from 10 PiZZ and 10 PiMM subjects obtained at the National Institute of Tuberculosis and Lung Diseases in Warsaw, Poland, were subjected to non-denaturing 7.5% PAGE and 7.5% SDS-PAGE followed by Western blot. Moreover, purified A1AT was heated at 60°C and analyzed by a non-denaturing PAGE and 4–15% gradient SDS-PAGE followed by Western blot as well as by isolelectrofocusing and nephelometry. A total of 966 samples manifested percentages ≤ 2.8 or a double band in the alpha1-zone. According to the nephelometry data, 23 samples were classified as severe (A1AT ≤ 0.49 g/L) and 462 as intermediate (A1AT >0.49≤ 1.0 g/L) A1ATD. Twenty subjects agreed to complete the diagnosis and an additional 21 subjects agreed to family screening. We detected 9 cases with severe and 26 with intermediate A1ATD. Parallel experiments revealed that polymerization of M-type A1AT, when measured by nephelometry or isolelectrofocusing, yields inaccurate results, leading to the erroneous impression that it was Z type and not M-type A1AT. We illustrate the need for confirmation of Z A1AT values by “state of the art” method. Clinicians should consider a more in-depth investigation of A1ATD in patients when they exhibit serum polymers and low α1-globulin protein levels by SPE.  相似文献   
55.
S-allantoin, a major ureide compound, is produced in plant peroxisomes from oxidized purines. Sequence evidence suggested that the Transthyretin-like (TTL) protein, which interacts with brassinosteroid receptors, may act as a bifunctional enzyme in the synthesis of S-allantoin. Here, we show that recombinant TTL from Arabidopsis thaliana catalyzes two enzymatic reactions leading to the stereoselective formation of S-allantoin, hydrolysis of hydroxyisourate through a C-terminal Urah domain, and decarboxylation of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline through an N-terminal Urad domain. We found that two different mRNAs are produced from the TTL gene through alternative use of two splice acceptor sites. The corresponding proteins differ in the presence (TTL1−) and the absence (TTL2−) of a rare internal peroxisomal targeting signal (PTS2). The two proteins have similar catalytic activity in vitro but different in vivo localization: TTL1− localizes in peroxisomes, whereas TTL2− localizes in the cytosol. Similar splice variants are present in monocots and dicots. TTL originated in green algae through a Urad-Urah fusion, which entrapped an N-terminal PTS2 between the two domains. The presence of this gene in all Viridiplantae indicates that S-allantoin biosynthesis has general significance in plant nitrogen metabolism, while conservation of alternative splicing suggests that this mechanism has general implications in the regulation of the ureide pathway in flowering plants.  相似文献   
56.
A new and convenient stereocontrolled synthesis of the optically pure (S)-α-methyl,α-amino acids 6(ad) that exploits the chiral synthon 1,4-N,N-[(S)-1-phenylethyl]-piperazine-2,5-dione (1) is described. The (S)-1-phenylethyl group, bonded to each of the N-atoms of the 2,5-diketopiperazine, acts as a chiral inductor in the first alkylation, while the steric hindrance appears to be the determining factor of stereocontrol in third and forth alkylation.  相似文献   
57.
TNF-like cytokine (TL1A) is a newly identified member of the TNF superfamily of ligands that is important for T cell costimulation and Th1 polarization. However, despite increasing information about its functions, very little is known about expression of TL1A in normal or pathological states. In this study, we report that mononuclear phagocytes appear to be a major source of TL1A in rheumatoid arthritis (RA), as revealed by their strong TL1A expression in either synovial fluids or synovial tissue of rheumatoid factor (RF)-seropositive RA patients, but not RF-/RA patients. Accordingly, in vitro experiments revealed that human monocytes express and release significant amounts of soluble TL1A when stimulated with insoluble immune complexes (IC), polyethylene glycol precipitates from the serum of RF+/RA patients, or with insoluble ICs purified from RA synovial fluids. Monocyte-derived soluble TL1A was biologically active as determined by its capacity to induce apoptosis of the human erythroleukemic cell line TF-1, as well as to cooperate with IL-12 and IL-18 in inducing the production of IFN-gamma by CD4(+) T cells. Because RA is a chronic inflammatory disease with autoimmune etiology, in which ICs, autoantibodies (including RF), and various cytokines contribute to its pathology, our data suggest that TL1A could be involved in its pathogenesis and contribute to the severity of RA disease that is typical of RF+/RA patients.  相似文献   
58.
High expression of IL-21 and/or IL-21R has been described in T cell-mediated inflammatory diseases characterized by defects of counterregulatory mechanisms. CD4(+)CD25(+) regulatory T cells (Treg) are a T cell subset involved in the control of the immune responses. A diminished ability of these cells to inhibit T cell activation has been documented in immune-inflammatory diseases, raising the possibility that inflammatory stimuli can block the regulatory properties of Treg. We therefore examined whether IL-21 controls CD4(+)CD25(+) T cell function. We demonstrate in this study that IL-21 markedly enhances the proliferation of human CD4(+)CD25(-) T cells and counteracts the suppressive activities of CD4(+)CD25(+) T cells on CD4(+)CD25(-) T cells without affecting the percentage of Foxp3(+) cells or survival of Treg. Additionally, CD4(+)CD25(+) T cells induced in the presence of IL-21 maintain the ability to suppress alloresponses. Notably, IL-21 enhances the growth of CD8(+)CD25(-) T cells but does not revert the CD4(+)CD25(+) T cell-mediated suppression of this cell type, indicating that IL-21 makes CD4(+) T cells resistant to suppression rather than inhibiting CD4(+)CD25(+) T cell activity. Finally, we show that IL-2, IL-7, and IL-15, but not IL-21, reverse the anergic phenotype of CD4(+)CD25(+) T cells. Data indicate that IL-21 renders human CD4(+)CD25(-) T cells resistant to Treg-mediated suppression and suggest a novel mechanism by which IL-21 could augment T cell-activated responses in human immune-inflammatory diseases.  相似文献   
59.
The synthesis of new conformationally biased cyclic pentapeptides, incorporating the RGD sequence, and built around a tetrahydroazoninone scaffold, is reported. They exhibit interesting activity towards integrin alphaVbeta3 and a remarkable selectivity in comparison with integrin alphaVbeta5.  相似文献   
60.
Tight control of translation is fundamental for eukaryotic cells, and deregulation of proteins implicated contributes to numerous human diseases. The neurodegenerative disorder spinocerebellar ataxia type 2 is caused by a trinucleotide expansion in the SCA2 gene encoding a lengthened polyglutamine stretch in the gene product ataxin-2, which seems to be implicated in cellular RNA-processing pathways and translational regulation. Here, we substantiate a function of ataxin-2 in such pathways by demonstrating that ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6, a component of P-bodies and stress granules, representing cellular structures of mRNA triage. We discovered that altered ataxin-2 levels interfere with the assembly of stress granules and cellular P-body structures. Moreover, ataxin-2 regulates the intracellular concentration of its interaction partner, the poly(A)-binding protein, another stress granule component and a key factor for translational control. Thus, our data imply that the cellular ataxin-2 concentration is important for the assembly of stress granules and P-bodies, which are main compartments for regulating and controlling mRNA degradation, stability, and translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号