首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   7篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   5篇
  2014年   7篇
  2013年   2篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
41.
In a prospective, clinical, surgery study we report here for the first time, in detail, on the surgical castration of 10 captive adult male common hippopotami (Hippopotamus amphibius). The successful procedures, a species-specific modification of standard equine castration techniques, provide valuable insight into the spatially dynamic nature of the common hippopotamus testis. The use of ultrasonography to locate the testis before and during the procedures and species-specific positioning during surgery greatly facilitated this distinctive procedure. Additionally, this surgical method provides an important additional tool for captive management of the common hippopotamus. Castration of individual males not only facilitates population control but can potentially also be employed to limit intermale aggression.  相似文献   
42.
Cancer cells activate the biosynthesis of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in order to sustain an increasing demand for phospholipids with appropriate acyl composition during cell replication. We have previously shown that a stable knockdown of stearoyl-CoA desaturase 1 (SCD1), the main Δ9-desaturase that converts SFA into MUFA, in cancer cells decreases the rate of lipogenesis, reduces proliferation and in vitro invasiveness, and dramatically impairs tumor formation and growth. Here we report that pharmacological inhibition of SCD1 with a novel small molecule in cancer cells promoted the activation of AMP-activated kinase (AMPK) and the subsequent reduction of acetylCoA carboxylase activity, with a concomitant inhibition of glucose-mediated lipogenesis. The pharmacological inhibition of AMPK further decreased proliferation of SCD1-depleted cells, whereas AMPK activation restored proliferation to control levels. Addition of supraphysiological concentrations of glucose or pyruvate, the end product of glycolysis, did not reverse the low proliferation rate of SCD1-ablated cancer cells. Our data suggest that cancer cells require active SCD1 to control the rate of glucose-mediated lipogenesis, and that when SCD1 activity is impaired cells downregulate SFA synthesis via AMPK-mediated inactivation of acetyl-CoA carboxylase, thus preventing the harmful effects of SFA accumulation.  相似文献   
43.
We investigate and quantify the effects of pH and salt concentration on the charge regulation of the bacteriophage PP7 capsid. These effects are found to be extremely important and substantial, introducing qualitative changes in the charge state of the capsid such as a transition from net-positive to net-negative charge depending on the solution pH. The overall charge of the virus capsid arises as a consequence of a complicated balance with the chemical dissociation equilibrium of the amino acids and the electrostatic interaction between them, and the translational entropy of the mobile solution ions, i.e., counterion release. We show that to properly describe and predict the charging equilibrium of viral capsids in general, one needs to include molecular details as exemplified by the acid-base equilibrium of the detailed distribution of amino acids in the proteinaceous capsid shell.  相似文献   
44.
We studied the regulation of triacylglycerol (TAG) metabolism by phosphatidylcholine (PC) in CHO MT58 cells, which are deficient in PC synthesis because of a temperature-sensitive CTP:phosphocholine cytidylyltransferase. At the permissive growth temperature (34 degrees C), these cells contained 49% less TAG and 30% less PC than wild-type CHO K1 cells. Treatment with dipalmitoylphosphatidylcholine normalized both the PC and TAG levels. Despite low TAG levels, the incorporation of [14C]oleate into TAG was increased in CHO MT58 cells. The in vitro de novo synthesis of TAG and the activity of diacylglycerol acyltransferase were 90% and 34% higher, respectively. Two other key enzyme activities in TAG synthesis, acyl-CoA synthetase and mitochondrial glycerol-3-phosphate acyltransferase (GPAT), increased by 48% and 2-fold, respectively, and mitochondrial GPAT mRNA increased by approximately 4-fold. Additionally, TAG hydrolysis was accelerated in CHO MT58 cells, and in vitro lipolytic activity increased by 68%. These studies suggest that a homeostatic mechanism increases TAG synthesis and recycling in response to PC deficiency. TAG recycling produces diacylglycerol and fatty acids that can be substrates for de novo PC synthesis and for lysophosphatidylcholine (lysoPC) acylation. In CHO MT58 cells, in which de novo PC synthesis is blocked, lysoPC acylation with fatty acid originating from TAG may represent the main pathway for generating PC.  相似文献   
45.
A single application of cyclic compression (1kPa, 1Hz, 30min) to bioengineered cartilage results in improved tissue formation through sequential catabolic and anabolic changes mediated via cell shape changes that are regulated by α5β1 integrin and membrane-type metalloprotease (MT1-MMP). To determine if calcium was involved in this process, the role of calcium in regulating cell shape changes, MT1-MMP expression and integrin activity in response to mechanical stimulation was examined. Stimulation-induced changes in cell shape and MT1-MMP expression were abolished by chelation of extracellular calcium, and this effect was reversed by re-introduction of calcium. Spreading was inhibited by blocking stretch-activated channels (with gadolinium), while retraction was prevented by blocking the L-Type voltage-gated channel (with nifedipine); both compounds inhibited MT1-MMP upregulation. Calcium A23187 ionophore restored cellular response further supporting a role for these channels. Calcium regulated the integrin-mediated signalling pathway, which was facilitated through Src kinase. Both calcium- and integrin-mediated pathways converged on ERK-MAPK in response to stimulation. While both integrins and calcium signalling mediate chondrocyte mechanotransduction, calcium appears to play the major regulatory role. Understanding the underlying molecular mechanisms involved in chondrocyte mechanotransduction may lead to the development of improved bioengineered cartilage.  相似文献   
46.
The pathogenic process of tissue-specific autoimmune disease depends to a large extent on recruitment of Ag-nonspecific cells into the target tissue. Little is known, however, about the recruitment process and the features that characterize the recruited cells. In this study, we analyzed the recruitment of Ag-nonspecific lymphoid cells into an inflammatory site by using an experimental system in which TCR-transgenic Th1 cells are adoptively transferred to induce ocular inflammation in recipient mice that express the target Ag in their eyes. A sharp increase in number of all host cell populations was observed in the recipient spleen, reaching a peak on day 4 postcell transfer and declining thereafter. A large portion of the host's spleen CD4 cells underwent phenotypic changes that facilitate their migration into the target organ, the eye. These changes included increased expression of the chemokine receptor CXCR3, and the adhesion molecule CD49d, as well as a decline in expression of CD62L. The host lymphocytes migrated into the recipient mouse eye more slowly than the donor cells, but became the great majority of the infiltrating cells at the peak of inflammation on day 7 postcell injection. Interestingly, the mass migration of host T cells was preceded by an influx of host dendritic cells, that reached their peak on day 4 postcell injection. The eye-infiltrating host CD4 lymphocytes underwent additional changes, acquiring a profile of activated lymphocytes, i.e., up-regulation of CD25 and CD69. Our results thus provide new information about the active participation of Ag-nonspecific lymphoid cells in immune-mediated inflammation.  相似文献   
47.
There is clear evidence of an interleaflet coupling in model lipid/cholesterol membranes exhibiting liquid-liquid phase separation. The strength of this coupling is quantified by the mismatch free energy, γ. We calculate it using a molecular mean-field model of a phase-separated lipid/cholesterol bilayer and obtain values that increase as the concentration of saturated lipids in the coexisting phases is increased. These values lie in the range 0.01–0.03 kBT/nm2. We clarify the relationship between the interleaflet coupling and the extent of interleaflet alignment of liquid domains by analyzing a statistical mechanical model of coupled fluctuating domain interfaces. The model is solved exactly using the correspondence between statistical mechanics and quantum mechanics, yielding an expression for the characteristic size of fluctuations out of domain registry. This length scale depends only weakly on the strength of the interleaflet coupling and inevitably is only of the order of nanometers, which explains the experimental result that fluctuations out of domain registry have not been observed by optical microscopy.  相似文献   
48.
49.
Microscopic structural changes have long been observed in cancer cells and used as a marker in cancer diagnosis. Recent development of an optical technique, partial-wave spectroscopy (PWS), enabled more sensitive detection of nanoscale structural changes in early carcinogenesis in terms of the disorder strength related to density variations. These nanoscale alterations precede the well-known microscopic morphological changes. We investigate the influence of nuclear density variations due to chromosome condensation on changes of disorder strength by computer simulations of model chromosomes. Nuclear configurations with different degrees of chromosome condensation are realized from simulations of decondensing chromosomes and the disorder strength is calculated for these nuclear configurations. We found that the disorder strength increases significantly for configurations with slightly more condensed chromosomes. Coupled with PWS measurements, the simulation results suggest that the chromosome condensation and the resulting spatial density inhomogeneity may represent one of the earliest events in carcinogenesis.  相似文献   
50.
The prenylated flavanone 2'-4'-dihidroxy-5'-(1" '-dimethylallyl)-6-prenylpinocembrin) (6PP), isolated from the roots of Dalea elegans, shows antimicrobial activity. The aim of this study was to evaluate mitochondrial toxicity and antioxidant properties of 6PP. Addition of micromolar concentrations of 6PP to rat liver mitochondria, stimulated O2 uptake in state 4 and inhibited it in state 3 when malate-glutamate was the respiratory substrate, and inhibited O2 uptake in state 3 when succinate was the substrate. Highest concentration of 6PP also inhibited O2 uptake in state 4 in the latter case; in both conditions, respiratory control index values were decreased. This flavanone collapsed the mitochondrial membrane potential in a concentration-dependent manner. 6PP also inhibited F0F1-ATPase activity in coupled mitochondria and in submitochondrial particles. In the latter, this compound also inhibited NADH oxidase and succinate dehydrogenase activities. HEp-2 cells were incubated for 24 h with 6PP in presence or absence of 0.5% albumin. As measured by reduction of the mitochondrial-related probe MTT, in the albumin-free condition, 6PP was cytotoxic in a concentration-dependent manner; on the other hand, albumin decreased 6PP effect. In addition, in rat liver microsomes 6PP: (1) inhibited the enzymatic lipid peroxidation, (2) exhibited significant scavenging activity, measured by DPPH reduction assay and (3) demonstrated significant antioxidant activity by decreasing the reduction of Mo(VI) to Mo(V). We suggest that 6PP impairs the hepatic energy metabolism by acting as mitochondrial uncoupler and by inhibiting enzymatic activities linked to the respiratory chain. 6PP also exerts both antioxidant and antiradical activities. Due to its cytotoxicity, this molecule, and its future structure developments, can be considered as a potentially promising therapeutic agent, for instance in cancer chemotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号