首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   15篇
  国内免费   9篇
  2023年   2篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   13篇
  2014年   14篇
  2013年   11篇
  2012年   6篇
  2011年   14篇
  2010年   9篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   10篇
  1997年   6篇
  1996年   6篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1982年   2篇
  1979年   3篇
  1977年   2篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
  1955年   1篇
  1954年   2篇
排序方式: 共有191条查询结果,搜索用时 31 毫秒
11.

Background  

Structural genomics (SG) projects aim to determine thousands of protein structures by the development of high-throughput techniques for all steps of the experimental structure determination pipeline. Crucial to the success of such endeavours is the careful tracking and archiving of experimental and external data on protein targets.  相似文献   
12.
Jakob  CA; Burda  P; te Heesen  S; Aebi  M; Roth  J 《Glycobiology》1998,8(2):155-164
In higher eukaryotes a quality control system monitoring the folding state of glycoproteins is located in the ER and is composed of the proteins calnexin, calreticulin, glucosidase II, and UDP-glucose: glycoprotein glucosyltransferase. It is believed that the innermost glucose residue of the N- linked oligosaccharide of a glycoprotein serves as a tag in this control system and therefore performs an important function in the protein folding pathway. To address this function, we constructed Saccharomyces cerevisiae strains which contain nonglucosylated (G0), monoglucosylated (G1), or diglucosylated (G2) glycoproteins in the ER and used these strains to study the role of glucose residues in the ER processing of glycoproteins. These alterations of the oligosaccharide structure did not result in a growth phenotype, but the induction of the unfolded protein response upon treatment with DTT was much higher in G0 and G2 strains as compared to wild-type and G1 strains. Our results provide in vivo evidence that the G1 oligosaccharide is an active oligosaccharide structure in the ER glycoprotein processing pathway of S.cerevisiae. Furthermore, by analyzing N- linked oligosaccharides of the constructed strains we can directly show that no general glycoprotein glucosyltransferase exists in S. cerevisiae.   相似文献   
13.
Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.  相似文献   
14.
The aims of the present study were to investigate the relationship of aerobic and anaerobic parameters with 400 m performance, and establish which variable better explains long distance performance in swimming. Twenty-two swimmers (19.1±1.5 years, height 173.9±10.0 cm, body mass 71.2±10.2 kg; 76.6±5.3% of 400 m world record) underwent a lactate minimum test to determine lactate minimum speed (LMS) (i.e., aerobic capacity index). Moreover, the swimmers performed a 400 m maximal effort to determine mean speed (S400m), peak oxygen uptake (V.O2PEAK) and total anaerobic contribution (CANA). The CANA was assumed as the sum of alactic and lactic contributions. Physiological parameters of 400 m were determined using the backward extrapolation technique (V.O2PEAK and alactic contributions of CANA) and blood lactate concentration analysis (lactic anaerobic contributions of CANA). The Pearson correlation test and backward multiple regression analysis were used to verify the possible correlations between the physiological indices (predictor factors) and S400m (independent variable) (p < 0.05). Values are presented as mean ± standard deviation. Significant correlations were observed between S400m (1.4±0.1 m·s-1) and LMS (1.3±0.1 m·s-1; r = 0.80), V.O2PEAK (4.5±3.9 L·min-1; r = 0.72) and CANA (4.7±1.5 L·O2; r= 0.44). The best model constructed using multiple regression analysis demonstrated that LMS and V.O2PEAK explained 85% of the 400 m performance variance. When backward multiple regression analysis was performed, CANA lost significance. Thus, the results demonstrated that both aerobic parameters (capacity and power) can be used to predict 400 m swimming performance.  相似文献   
15.
16.
17.
18.
We examined the effect of fire frequency and intensity on a Protea caffra tree population in the temperate montane grasslands of north-western KwaZulu-Natal, South Africa. We assessed the effect of fire by comparing the population structure of the resprouter P. caffra in discrete bracken (Pteridium aquilinum) patches with that in the surrounding grassland matrix. Fuel biomass did not differ between grassland and bracken, but bracken fuel was significantly drier than grass. Above-ground fire temperatures and fireline intensity, measured by P. caffra char height, were significantly higher in the bracken habitat. Forty-two percent of the P. caffra population in grassland and in bracken persisted by coppice resprouts, having lost their original stem to fire damage. Exposure to higher intensity bracken fire suppressed P. caffra regeneration and caused greater adult mortality compared with trees in grassland. Consequently, the P. caffra population in bracken was skewed towards old age with most trees severely fire damaged. The high incidence of small trees in grassland indicates that a regular fire interval of 2–3 years does not negatively affect regeneration of P. caffra. However, in bracken patches regular high intensity fires cause high mortality among all P. caffra size classes and will ultimately result in local extinction. Bracken thus has the potential to significantly alter tree–grass interactions in these montane grasslands.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号