首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27380篇
  免费   2337篇
  国内免费   1616篇
  2024年   39篇
  2023年   246篇
  2022年   389篇
  2021年   1051篇
  2020年   762篇
  2019年   972篇
  2018年   1069篇
  2017年   774篇
  2016年   1202篇
  2015年   1790篇
  2014年   2073篇
  2013年   2109篇
  2012年   2553篇
  2011年   2432篇
  2010年   1453篇
  2009年   1379篇
  2008年   1590篇
  2007年   1460篇
  2006年   1298篇
  2005年   1110篇
  2004年   1092篇
  2003年   867篇
  2002年   730篇
  2001年   462篇
  2000年   362篇
  1999年   327篇
  1998年   258篇
  1997年   197篇
  1996年   190篇
  1995年   153篇
  1994年   139篇
  1993年   88篇
  1992年   110篇
  1991年   100篇
  1990年   103篇
  1989年   82篇
  1988年   54篇
  1987年   54篇
  1986年   41篇
  1985年   43篇
  1984年   34篇
  1983年   22篇
  1982年   16篇
  1981年   17篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1972年   5篇
  1971年   3篇
  1969年   3篇
排序方式: 共有10000条查询结果,搜索用时 155 毫秒
991.
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand‐full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.  相似文献   
992.
993.
994.
Cardiorespiratory fitness (VO2 peak) declines with age and is an independent risk factor for morbidity and mortality in older adults. Identifying biomarkers of low fitness may provide insight for why some individuals experience an accelerated decline of aerobic capacity and may serve as clinically valuable prognostic indicators of cardiovascular health. We investigated the relationship between circulating ceramides and VO2 peak in 443 men and women (mean age of 69) enrolled in the Baltimore Longitudinal Study of Aging (BLSA). Individual species of ceramide were quantified by HPLC–tandem mass spectrometry. VO2 peak was measured by a graded treadmill test. We applied multiple regression models to test the associations between ceramide species and VO2 peak, while adjusting for age, sex, blood pressure, serum LDL, HDL, triglycerides, and other covariates. We found that higher levels of circulating C18:0, C20:0, C24:1 ceramides and C20:0 dihydroceramides were strongly associated with lower aerobic capacity (< 0.001, < 0.001, = 0.018, and < 0.001, respectively). The associations held true for both sexes (with men having a stronger association than women, P value for sex interaction <0.05) and were unchanged after adjusting for confounders and multiple comparison correction. Interestingly, no significant association was found for C16:0, C22:0, C24:0, C26:0, and C22:1 ceramide species, C24:0 dihydroceramide, or total ceramides. Our analysis reveals that specific long‐chain ceramides strongly associate with low cardiovascular fitness in older adults and may be implicated in the pathogenesis of low fitness with aging. Longitudinal studies are needed to further validate these associations and investigate the relationship between ceramides and health outcomes.  相似文献   
995.
Alzheimer's disease (AD) is characterized clinically by memory loss and cognitive decline. Protein kinase A (PKA)‐CREB signaling plays a critical role in learning and memory. It is known that glucose uptake and O‐GlcNAcylation are reduced in AD brain. In this study, we found that PKA catalytic subunits (PKAcs) were posttranslationally modified by O‐linked N‐acetylglucosamine (O‐GlcNAc). O‐GlcNAcylation regulated the subcellular location of PKAcα and PKAcβ and enhanced their kinase activity. Upregulation of O‐GlcNAcylation in metabolically active rat brain slices by O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidenamino) N‐phenylcarbamate (PUGNAc), an inhibitor of N‐acetylglucosaminidase, increased the phosphorylation of tau at the PKA site, Ser214, but not at the non‐PKA site, Thr205. In contrast, in rat and mouse brains, downregulation of O‐GlcNAcylation caused decreases in the phosphorylation of CREB at Ser133 and of tau at Ser214, but not at Thr205. Reduction in O‐GlcNAcylation through intracerebroventricular injection of 6‐diazo‐5‐oxo‐l ‐norleucine (DON), the inhibitor of glutamine fructose‐6‐phosphate amidotransferase, suppressed PKA‐CREB signaling and impaired learning and memory in mice. These results indicate that in addition to cAMP and phosphorylation, O‐GlcNAcylation is a novel mechanism that regulates PKA‐CREB signaling. Downregulation of O‐GlcNAcylation suppresses PKA‐CREB signaling and consequently causes learning and memory deficits in AD.  相似文献   
996.
Phenyl‐2‐pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near‐senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose‐ and time‐dependent manner and resulted in senescence‐associated β‐galactosidase (SA‐β‐gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence‐associated proteins, such as phosphorylated ERK1/2, caveolin‐1, p53, p16ink4a, and p21waf1, were elevated in PPKO‐treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N‐acetylcysteine, 2,2,6,6‐tetramethylpiperidinyloxy, and L‐buthionine‐(S,R)‐sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L‐NG‐nitroarginine methyl ester and L‐NG‐monomethylarginine, PPKO‐induced transient NO production and SA‐β‐gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence‐associated proteins .  相似文献   
997.
DNA methylation plays major roles in many biological processes, including aging, carcinogenesis, and development. Analyses of DNA methylation using next‐generation sequencing offer a new way to profile and compare methylomes across the genome in the context of aging. We explored genomewide DNA methylation and the effects of short‐term calorie restriction (CR) on the methylome of aged rat kidney. Whole‐genome methylation of kidney in young (6 months old), old (25 months old), and OCR (old with 4‐week, short‐term CR) rats was analyzed by methylated DNA immunoprecipitation and next‐generation sequencing (MeDIP‐Seq). CpG islands and repetitive regions were hypomethylated, but 5′‐UTR, exon, and 3′‐UTR hypermethylated in old and OCR rats. The methylation in the promoter and intron regions was decreased in old rats, but increased in OCR rats. Pathway enrichment analysis showed that the hypermethylated promoters in old rats were associated with degenerative phenotypes such as cancer and diabetes. The hypomethylated promoters in old rats related significantly to the chemokine signaling pathway. However, the pathways significantly enriched in old rats were not observed from the differentially methylated promoters in OCR rats. Thus, these findings suggest that short‐term CR could partially ameliorate age‐related methylation changes in promoters in old rats. From the epigenomic data, we propose that the hypermethylation found in the promoter regions of disease‐related genes during aging may indicate increases in susceptibility to age‐related diseases. Therefore, the CR‐induced epigenetic changes that ameliorate age‐dependent aberrant methylation may be important to CR's health‐ and life‐prolonging effects.  相似文献   
998.
Bleeding is a clinical characteristic of severe dengue and may be due to increased vascular permeability. However, the pathogenesis of severe dengue remains unclear. In this study, we showed that the Rac1-microfilament signal pathway was involved in the process of DENV serotype 2 (DENV2) infection in EAhy926 cells. DENV2 infection induced dynamic changes in actin organization, and treatment with Cytochalasin D or Jasplakinolide disrupted microfilament dynamics, reduced DENV2 entry, and inhibited DENV2 assembly and maturation. Rac1 activities decreased during the early phase and gradually increased by the late phase of infection. Expression of the dominant-negative form of Rac1 promoted DENV2 entry but inhibited viral assembly, maturation and release. Our findings demonstrated that Rac1 plays an important role in the DENV2 life cycle by regulating actin reorganization in EAhy926 cells. This finding provides further insight into the pathogenesis of severe dengue.  相似文献   
999.
Dengue fever is a tropical disease and caused by dengue virus (DENV), which is transmitted by mosquitoes and infects about 400 million people annually. With the development of international trade and travel, China is facing a growing threat. Over 40 thousands of people were infected during the 2014 DENV outbreak in Guangdong. Neither licensed vaccine nor therapeutic drug has been available. In this report, we isolated two clinical DENV strains. The full-length genome was sequenced and characterized. We also applied a flavonoid, CPI, into an anti-DENV assay. Replication of viral RNA and expression of viral protein was all strongly inhibited. These results indicated that CPI may serve as potential protective agents in the treatment of patients with chronic DENV infection.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号