首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   656篇
  免费   38篇
  2023年   5篇
  2022年   2篇
  2021年   10篇
  2020年   17篇
  2019年   10篇
  2018年   21篇
  2017年   26篇
  2016年   27篇
  2015年   31篇
  2014年   29篇
  2013年   50篇
  2012年   56篇
  2011年   49篇
  2010年   36篇
  2009年   31篇
  2008年   36篇
  2007年   34篇
  2006年   32篇
  2005年   52篇
  2004年   31篇
  2003年   21篇
  2002年   17篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   9篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1977年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
  1961年   2篇
  1960年   4篇
  1958年   1篇
  1945年   1篇
排序方式: 共有694条查询结果,搜索用时 15 毫秒
111.
The purpose of this study was to describe the surgical outcomes and safety of intracameral bevacizumab during trabeculectomy in eyes with neovascular glaucoma. Pilot study included four eyes (four patients) with refractory neovascular glaucoma submitted to fornix-based trabeculectomy with adjunctive use of bevacizumab in the anterior chamber during the procedure. Patients were previously treated with panretinal photocoagulation as standard therapy. Variables evaluated were intraocular pressure, bleb appearance, iris neovascularization, intraoperative/postoperative complications, and visual outcomes. No intraoperative complication was observed. The mean follow-up period was 12.75 (range, 12–15 months). All eyes showed significant intraocular pressure control postoperatively. Iris neovascularization reduced significantly within 1 month after surgery. Mild anterior chamber inflammation was observed during follow-up in all eyes. No significant postoperative complication was observed, and no patient presented visual acuity deterioration. Intracameral bevacizumab may be used as an adjunctive therapy during trabeculectomy in eyes with neovascular glaucoma.  相似文献   
112.
One limitation of almost all antiviral Quantitative Structure–Activity Relationships (QSAR) models is that they predict the biological activity of drugs against only one species of virus. Consequently, the development of multi-tasking QSAR models (mt-QSAR) to predict drugs activity against different species of virus is of the major vitally important. These mt-QSARs offer also a good opportunity to construct drug–drug Complex Networks (CNs) that can be used to explore large and complex drug-viral species databases. It is known that in very large CNs we can use the Giant Component (GC) as a representative sub-set of nodes (drugs) and but the drug–drug similarity function selected may strongly determines the final network obtained. In the three previous works of the present series we reported mt-QSAR models to predict the antimicrobial activity against different fungi [Gonzalez-Diaz, H.; Prado-Prado, F. J.; Santana, L.; Uriarte, E. Bioorg. Med. Chem. 2006, 14, 5973], bacteria [Prado-Prado, F. J.; Gonzalez-Diaz, H.; Santana, L.; Uriarte E. Bioorg. Med. Chem. 2007, 15, 897] or parasite species [Prado-Prado, F.J.; González-Díaz, H.; Martinez de la Vega, O.; Ubeira, F.M.; Chou K.C. Bioorg. Med. Chem. 2008, 16, 5871]. However, including these works, we do not found any report of mt-QSAR models for antivirals drug, or a comparative study of the different GC extracted from drug–drug CNs based on different similarity functions. In this work, we used Linear Discriminant Analysis (LDA) to fit a mt-QSAR model that classify 600 drugs as active or non-active against the 41 different tested species of virus. The model correctly classifies 143 of 169 active compounds (specificity = 84.62%) and 119 of 139 non-active compounds (sensitivity = 85.61%) and presents overall training accuracy of 85.1% (262 of 308 cases). Validation of the model was carried out by means of external predicting series, classifying the model 466 of 514, 90.7% of compounds. In order to illustrate the performance of the model in practice, we develop a virtual screening recognizing the model as active 92.7%, 102 of 110 antivirus compounds. These compounds were never use in training or predicting series. Next, we obtained and compared the topology of the CNs and their respective GCs based on Euclidean, Manhattan, Chebychey, Pearson and other similarity measures. The GC of the Manhattan network showed the more interesting features for drug–drug similarity search. We also give the procedure for the construction of Back-Projection Maps for the contribution of each drug sub-structure to the antiviral activity against different species.  相似文献   
113.
Antimicrobial defensins with the cysteine-stabilized α-helical and β-sheet (CSαβ) motif are widely distributed in three eukaryotic kingdoms. However, recent work suggests that bacteria could possess defensin-like peptides (DLPs). Here, we report recombinant expression, in vitro folding, structural and functional characterization of a DLP from the myxobacterium Anaeromyxobacter dehalogenans (AdDLP). Circular dichroism analysis indicates that recombinant AdDLP adopts a typical structural feature of eukaryotic defensins, which is also consistent with an ab initio structure model predicted using I-TASSER algorithm. We found that AdDLP is an antimalarial peptide that led to more than 50% growth inhibition on sexual stages of Plasmodium berghei at micromolar concentrations and killed 100% intraerythrocytic Plasmodium falciparum at 10 μM in a time-dependent manner. These results provide functional evidence for myxobacterial origin of eukaryotic defensins. High-level production of the pure anti-Plasmodium peptide without harming mammalian red blood cells in Escherichia coli makes AdDLP an interesting candidate for antimalarial drug design.  相似文献   
114.
NSP-interacting kinase (NIK1) is a receptor-like kinase identified as a virulence target of the begomovirus nuclear shuttle protein (NSP). We found that NIK1 undergoes a stepwise pattern of phosphorylation within its activation-loop domain (A-loop) with distinct roles for different threonine residues. Mutations at Thr-474 or Thr-468 impaired autophosphorylation and were defective for kinase activation. In contrast, a mutation at Thr-469 did not impact autophosphorylation and increased substrate phosphorylation, suggesting an inhibitory role for Thr-469 in kinase function. To dissect the functional significance of these results, we used NSP-expressing virus infection as a mechanism to interfere with wild type and mutant NIK1 action in plants. The NIK1 knockout mutant shows enhanced susceptibility to virus infections, a phenotype that could be complemented with ectopic expression of a 35S-NIK1 or 35S-T469A NIK1 transgenes. However, ectopic expression of an inactive kinase or the 35S-T474A NIK1 mutant did not reverse the enhanced susceptibility phenotype of knockout lines, demonstrating that Thr-474 autophosphorylation was needed to transduce a defense response to geminiviruses. Furthermore, mutations at Thr-474 and Thr-469 residues antagonistically affected NIK-mediated nuclear relocation of the downstream effector rpL10. These results establish that NIK1 functions as an authentic defense receptor as it requires activation to elicit a defense response. Our data also suggest a model whereby phosphorylation-dependent activation of a plant receptor-like kinase enables the A-loop to control differentially auto- and substrate phosphorylation.  相似文献   
115.
Bacillus thuringiensis ssp. israelensis (Bti) produces four Cry toxins (Cry4Aa, Cry4Ba, Cry10Aa and Cry11Aa), and two Cyt proteins (Cyt1Aa and Cyt2Ba), toxic to mosquito‐larvae of the genus Aedes, Anopheles and Culex, important human disease vectors that transmit dengue virus, malaria and filarial parasites respectively. Previous work showed that Bti is highly toxic to Anopheles albimanus, the main vector for transmission of malaria in Mexico. In this work, we analysed the toxicity of isolated Cry proteins of Bti and identified an An. albimanus midgut protein as a putative Cry4Ba and Cry11Aa receptor molecule. Biossays showed that Cry4Ba and Cry11Aa of Bti are toxic to An. albimanus larvae. Ligand blot assays indicated that a 70 kDa glycosylphosphatidylinositol‐anchored protein present in midgut brush border membrane vesicles of An. albimanus interacts with Cry4Ba and Cry11Aa toxins. This protein was identified as an α‐amylase by mass spectrometry and enzymatic activity assays. The cDNA that codes for the α‐amylase was cloned by means of 5′‐ and 3′‐RACE experiments. Recombinant α‐amylase expressed in Escherichia coli specifically binds Cry4Ba and Cry11Aa toxins.  相似文献   
116.
Starting from alpha- and beta-lapachones, in this work we compared the biological and theoretical profile of several oxyran derivatives of lapachone as potential trypanocidal agents. Our biological results showed that the oxyrans tested act as trypanocidal agents against Trypanosoma cruzi with minimal cytotoxicity in the VERO cell line compared to naphthoquinones. The oxyran derivative of alpha-lapachone (7a) showed to be one of the most potent compounds. In our molecular modeling study, we analyzed the C-ring moiety and the redox center of beta-lapachone molecule as the moieties responsible for the trypanocidal and cytotoxic effects on mammalian cell line. The computational methods used to delineate the structural requirements for the trypanocidal profile pointed out that the transposition of the C-ring moiety of beta-lapachone, combined with its oxyran ring, introduced important molecular requirements for trypanocidal activity in the HOMO energy, HOMO orbital coefficient, LUMO density, electrostatic potential map, dipole moment vector, and calculated logP (clogP) parameter. This study could lead to the development of new antichagasic medicines based on alpha-lapachone analogs.  相似文献   
117.
118.
Alkalinization of the external environment represents a stress situation for Saccharomyces cerevisiae. Adaptation to this circumstance involves the activation of diverse response mechanisms, the components of which are still largely unknown. We show here that mutation of members of the cell integrity Pkc1/Slt2 MAPK module, as well as upstream and downstream elements of the system, confers sensitivity to alkali. Alkalinization resulted in fast and transient activation of the Slt2 MAPK, which depended on the integrity of the kinase module and was largely abolished by sorbitol. Lack of Wsc1, removal of specific extracellular and intracellular domains, or substitution of Tyr(303) in this putative membrane stress sensor rendered cells sensitive to alkali and considerably decreased alkali-induced Slt2 activation. In contrast, constitutive activation of Slt2 by the bck1-20 allele increased pH tolerance in the wsc1 mutant. DNA microarray analysis revealed that several genes encoding cell wall proteins, such as GSC2/FKS2, DFG5, SKT5, and CRH1, were induced, at least in part, by high pH in an Slt2-dependent manner. We observed that dfg5, skt5, and particularly dfg5 skt5 cells were alkali-sensitive. Therefore, our results show that an alkaline environment imposes a stress condition on the yeast cell wall. We propose that the Slt2-mediated MAPK pathway plays an important role in the adaptive response to this insult and that Wsc1 participates as an essential cell-surface pH sensor. Moreover, these results provide a new example of the complexity of the response of budding yeast to the alkalinization of the environment.  相似文献   
119.
Improvement of fillet traits and flesh quality attributes are of great interest in farmed tilapia and other aquaculture species. The main objective of this study was to estimate genetic parameters for fillet traits (fillet weight and fillet yield) and the fat content of fillets from 1136 males combined with 2585 data records on growth traits (body weight at 290 days, weight at slaughter, and daily weight gain) of 1485 males and 1100 females from a third generation of the Aquaamerica tilapia strain. Different models were tested for each trait, and the best models were used to estimate genetic parameters for the fat content, fillet, and growth traits. Genetic and phenotypic correlations were estimated using two-trait animal models. The heritability estimates were moderate for the fat content of fillets and fillet yield (0.2–0.32) and slightly higher for body weight at slaughter (0.41). The genetic correlation between fillet yield and fat was significant (0.6), but the genetic correlations were not significant between body weight and fillet yield, body weight and fat content, daily weight gain and fillet yield, and daily weight gain and fat content (? 0.032, ? 0.1, ? 0.09, and ? 0.4, respectively). Based on the genetic correlation estimates, it is unlikely that changes in fillet yield and fat content will occur when using growth performance as a selection criterion, but indirect changes may be expected in fat content if selecting for higher fillet yield.  相似文献   
120.
Somaclonal variation refers to the genetic and epigenetic changes in plants regenerated from plant tissue culture. In this study, using intersimple sequence repeat (ISSR) molecular markers, the somaclonal variation during micropropagation of sugarcane using temporary immersion bioreactors (TIBs) was evaluated. Apices of the cultivar Mex 69-290 were established and multiplied by ten subcultures in TIBs. After 30 d in each subculture, the number and length of shoots per explant were recorded. For the molecular analysis, ten plants were taken per subculture, and a total of 109 bands from ten ISSR primers were obtained. For each subculture, the polymorphism (%) was calculated. A dendrogram of genetic distances between subcultures and the donor plant was obtained using a matrix of Nei’s genetic distances and the unweighted pair group method with arithmetic mean (UPGMA). The results showed that the production of sugarcane shoots tends to increase until subculture 8, while shoot length decreases. ISSR markers showed the existence of somaclonal variation during micropropagation of sugarcane. The subcultures with the highest percentage of polymorphism (%) and genetic distances (GD) were the 1°, 9°, and 10° (with 10.1, 15.6, and 10.1% and 0.0222, 0.0181, and 0.0181 GD, respectively). The molecular and statistical analysis showed that in vitro establishment and the number of subcultures are both factors that affected the frequency of somaclonal variation during the micropropagation of sugarcane using TIBs. Thus, it is important to determine the optimal number of subcultures that can be made from an explant for each species to be micropropagated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号