首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2177篇
  免费   217篇
  国内免费   8篇
  2023年   14篇
  2022年   9篇
  2021年   32篇
  2020年   23篇
  2019年   21篇
  2018年   25篇
  2017年   22篇
  2016年   49篇
  2015年   105篇
  2014年   122篇
  2013年   137篇
  2012年   167篇
  2011年   167篇
  2010年   102篇
  2009年   79篇
  2008年   110篇
  2007年   94篇
  2006年   132篇
  2005年   93篇
  2004年   92篇
  2003年   80篇
  2002年   77篇
  2001年   62篇
  2000年   67篇
  1999年   55篇
  1998年   17篇
  1997年   20篇
  1996年   15篇
  1995年   13篇
  1994年   14篇
  1993年   12篇
  1992年   24篇
  1991年   32篇
  1990年   13篇
  1989年   24篇
  1988年   26篇
  1987年   19篇
  1986年   31篇
  1985年   29篇
  1984年   19篇
  1983年   16篇
  1982年   8篇
  1981年   7篇
  1980年   10篇
  1979年   11篇
  1978年   15篇
  1976年   14篇
  1975年   15篇
  1973年   9篇
  1966年   6篇
排序方式: 共有2402条查询结果,搜索用时 31 毫秒
991.
Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.  相似文献   
992.
Human Mps1 (hMps1) is a mitotic checkpoint kinase responsible for sensing the unattached and tensionless kinetochore. Despite its importance in safeguarding proper chromosome segregation, how hMps1 is recruited to the kinetochore remains incompletely understood. Here, we demonstrate that phosphorylation at Thr-288 by the cell cycle checkpoint kinase CHK2 is involved in this process. We discovered that the phosphorylation-deficient T288A mutant has an impaired ability to localize to the kinetochore and cannot reestablish the mitotic checkpoint in hMps1-depleted cells. In support, we found that nocodazole induced hMps1 phosphorylation at the previously identified CHK2 site Thr-288 and that this could be detected at the kinetochore in a CHK2-dependent manner. Mechanistically, phosphorylation at Thr-288 promoted the interaction with the KMN (KNL1-Mis12-Ndc80 network) protein HEC1. Forced kinetochore localization corrected the defects associated with the T288A mutant. Our results provide evidence of a newly identified hMps1 phosphorylation site that is involved in the mitotic checkpoint and that CHK2 contributes to chromosomal stability through hMps1.  相似文献   
993.
PD-L1 has been widely demonstrated to contribute to failed antitumor immunity. Blockade of PD-L1 with monoclonal antibody could modulate the tumor immune environment to augment immunotherapy. PD-L1 expression is also detected in several types of cancer and is associated with poor prognosis. However, the prognostic role of PD-L1 in oral squamous cell carcinoma (OSCC) is still controversial. Our aim was to determine the role of PD-L1 in the prognosis of OSCC patients to identify its potential therapeutic relevance. PD-L1 immunoreactivity was analyzed by immunohistochemistry in 305 cancer specimens from primary OSCC patients. The medium follow-up time after surgery was 3.8 years (range from 0.1 to 11.1 years). The prognostic value of PD-L1 on overall survival was determined by Kaplan-Meier analysis and Cox proportional hazard models. Higher PD-L1 expression is more likely in tumor tissues of female than male OSCC patients (P = 0.0062). Patients with distant metastasis also had high PD-L1 expression (P = 0.0103). Multivariate analysis identified high PD-L1 expression as an independent risk factor in males and smokers (males: hazard ratio = 1.556, P = 0.0077; smokers: hazard ratio = 2.058, P = 0.0004). We suggest that PD-L1 expression, determined by IHC staining, could be an independent prognostic marker for OSCC patients who are male or who have a smoking habit.  相似文献   
994.
Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA.  相似文献   
995.
Lysinuric protein intolerance (LPI) is a rare, yet inimical, genetic disorder characterized by the paucity of essential dibasic amino acids in the cells. Amino acid transporter y+LAT-1 interacts with 4F2 cell-surface antigen heavy chain to transport the required dibasic amino acids. Mutation in y+LAT-1 is rumored to cause LPI. However, the underlying pathological mechanism is unknown, and, in this analysis, we investigate the impact of point mutation in y+LAT-1's interaction with 4F2 cell-surface antigen heavy chain in causing LPI. Using an efficient and extensive computational pipeline, we have isolated M50K and L334R single-nucleotide polymorphisms to be the most deleterious mutations in y+LAT-1s. Docking of mutant y+LAT-1 with 4F2 cell-surface antigen heavy chain showed decreased interaction compared with native y+LAT-1. Further, molecular dynamic simulation analysis reveals that the protein molecules increase in size, become more flexible, and alter their secondary structure upon mutation. We believe that these conformational changes because of mutation could be the reason for decreased interaction with 4F2 cell-surface antigen heavy chain causing LPI. Our analysis gives pathological insights about LPI and helps researchers to better understand the disease mechanism and develop an effective treatment strategy.  相似文献   
996.
A mutation in the dar gene of phage T4 restored the arrested DNA synthesis caused by the gene 59 mutation. We have studied the DNA replicative intermediates in cells infected with a dar mutant and a dar-amC5 (gene 59) mutant by velocity sedimentation in neutral and alkaline sucrose gradients. In T4 dar-infected cells, compared to the wild type, three kinds of abnormalities were observed in DNA replication (i) There were unusually rapidly sedimenting intermediates (800S). (ii) When centrifuged in alkaline gradients, there was less single-stranded DNA exceeding 1 phage unit. (iii) The rate of repair of DNA intermediates was slower. It has been proposed by others that the 200S DNA replicative intermediates are required for DNA packaging, but our results showed that the 800S DNA of dar does not have to be converted into the 200S form to undergo conversion to mature viral DNA. Therefore, 200S DNA may not be an obligatory intermediate for mature viral DNA formation. In amC5 (gene 59)-infected cells, the DNA was completely converted 2 to 3 min after intiation of replication to the biologically inactive 63S DNA, and DNA synthesis was concomitantly arrested. However, in dar-am-C5 (gene 59)-infected cells, the formation of abnormal 63S DNA did not occur and 200S DNA appeared instead. An endonucleolytic activity, normally associated with the cell membrane and capable of making double-stranded cuts, was found in the cytoplasm of T4 dar-infected cells. Because the total activity of this endonuclease is the same for both wild-type T4D and the dar mutant, it seems unlikely that the dar protein has endonucleolytic activity itself. However, the finding does explain the abnormal sedimentation of dar DNA intermediates (800S) as well as the proposed suppression mechanism of the gene 59 mutation.  相似文献   
997.
998.
The recessive mutation, mod A, in the Dictyostelium discoideum strain M31 results in an alteration in the post-translational modification of lysosomal enzymes. We now report studies which indicate that mod A is deficient in glucosidase II, an enzyme which is involved in the processing of asparagine-linked oligosaccharides. [2-3H]Mannose-labeled glycopeptides were prepared from three purified mod A lysosomal enzymes and compared to the equivalent glycopeptides from parental enzymes. The mod A glycopeptides were deficient in high mannose oligosaccharides containing two phosphomannosyl residues and accumulated oligosaccharides with one phosphomannosyl residue. The phosphate was present in the form of an acid-stable phosphodiester in both instances. There was also an increase in the amount of nonphosphorylated high mannose oligosaccharides mod A and these were larger than the corresponding material from the parental enzymes. In addition, the nonphosphorylated oligosaccharides were only partially degraded by alpha-mannosidase, indicating the presence of a blocking moiety. In vitro enzyme assays demonstrated that the mod A cells cannot remove the inner 1 leads to 3-linked glucose from a glucosylated high mannose oligosaccharide. The cells are also deficient in membrane-bound neutral p-nitrophenyl-alpha-D-glucosidase activity. This activity has been attributed to glucosidase II in other systems. Removal of the outer 1 leads to 2-linked glucose from Glc3Man9Glc-NAc2 is normal, demonstrating the presence of glucosidase I activity. We conclude from these data that M31 cells are deficient in glucosidase II, the enzyme which removes the two inner glucose residues from the glucosylated oligosaccharides of newly glycosylated proteins. This defect can explain the mod A phenotype and is proposed to be the primary genetic defect in these cells.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号