首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22809篇
  免费   2272篇
  国内免费   3048篇
  2024年   26篇
  2023年   375篇
  2022年   449篇
  2021年   1231篇
  2020年   889篇
  2019年   1133篇
  2018年   1052篇
  2017年   823篇
  2016年   1080篇
  2015年   1503篇
  2014年   1853篇
  2013年   1874篇
  2012年   2259篇
  2011年   2005篇
  2010年   1336篇
  2009年   1149篇
  2008年   1299篇
  2007年   1232篇
  2006年   1061篇
  2005年   901篇
  2004年   782篇
  2003年   643篇
  2002年   567篇
  2001年   404篇
  2000年   341篇
  1999年   311篇
  1998年   190篇
  1997年   166篇
  1996年   143篇
  1995年   97篇
  1994年   116篇
  1993年   82篇
  1992年   122篇
  1991年   101篇
  1990年   91篇
  1989年   83篇
  1988年   46篇
  1987年   50篇
  1986年   54篇
  1985年   41篇
  1984年   25篇
  1983年   31篇
  1982年   15篇
  1981年   14篇
  1980年   12篇
  1979年   23篇
  1978年   7篇
  1977年   9篇
  1976年   9篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 80 毫秒
991.
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.  相似文献   
992.
The cellular physiology and biology of human cardiac c‐kit+ progenitor cells has not been extensively characterized and remains an area of active research. This study investigates the functional expression of transient receptor potential vanilloid (TRPV) and possible roles for this ion channel in regulating proliferation and migration of human cardiac c‐kit+ progenitor cells. We found that genes coding for TRPV2 and TRPV4 channels and their proteins are significantly expressed in human c‐kit+ cardiac stem cells. Probenecid, an activator of TRPV2, induced an increase in intracellular Ca2+ (Ca2+i), an effect that may be attenuated or abolished by the TRPV2 blocker ruthenium red. The TRPV4 channel activator 4α‐phorbol 12‐13‐dicaprinate induced Ca2+i oscillations, which can be inhibited by the TRPV4 blocker RN‐1734. The alteration of Ca2+i by probenecid or 4α‐phorbol 12‐13‐dicprinate was dramatically inhibited in cells infected with TRPV2 short hairpin RNA (shRNA) or TRPV4 shRNA. Silencing TRPV2, but not TRPV4, significantly reduced cell proliferation by arresting cells at the G0/G1 boundary of the cell cycle. Cell migration was reduced by silencing TRPV2 or TRPV4. Western blot revealed that silencing TRPV2 decreased expression of cyclin D1, cyclin E, pERK1/2 and pAkt, whereas silencing TRPV4 only reduced pAkt expression. Our results demonstrate for the first time that functional TRPV2 and TRPV4 channels are abundantly expressed in human cardiac c‐kit+ progenitor cells. TRPV2 channels, but not TRPV4 channels, participate in regulating cell cycle progression; moreover, both TRPV2 and TRPV4 are involved in migration of human cardiac c‐kit+ progenitor cells.  相似文献   
993.
994.
995.

Background

Patients with adolescent idiopathic scoliosis (AIS) frequently receive x-ray imaging at diagnosis and subsequent follow monitoring. The ionizing radiation exposure has accumulated through their development stage and the effect of radiation to this young vulnerable group of patients is uncertain. To achieve the ALARA (as low as reasonably achievable) concept of radiation dose in medical imaging, a slot-scanning x-ray technique by the EOS system has been adopted and the radiation dose using micro-dose protocol was compared with the standard digital radiography on patients with AIS.

Methods

Ninety-nine participants with AIS underwent micro-dose EOS and 33 underwent standard digital radiography (DR) for imaging of the whole spine. Entrance-skin dose was measured using thermoluminescent dosimeters (TLD) at three regions (i.e. dorsal sites at the level of sternal notch, nipple line, symphysis pubis). Effective dose and organ dose were calculated by simulation using PCXMC 2.0. Data from two x-ray systems were compared using independent-samples t-test and significance level at 0.05. All TLD measurements were conducted on PA projection only. Image quality was also assessed by two raters using Cobb angle measurement and a set of imaging parameters for optimization purposes.

Results

Entrance-skin dose from micro-dose EOS system was 5.9–27.0 times lower at various regions compared with standard DR. The calculated effective dose was 2.6?±?0.5 (μSv) and 67.5?±?23.3 (μSv) from micro-dose and standard DR, respectively. The reduction in the micro-dose was approximately 26 times. Organ doses at thyroid, lung and gonad regions were significantly lower in micro-dose (p?<?0.001). Data were further compared within the different gender groups. Females received significantly higher (p?<?0.001) organ dose at ovaries compared to the testes in males. Patients with AIS received approximately 16–34 times lesser organ dose from micro-dose x-ray as compared with the standard DR. There was no significant difference in overall rating of imaging quality between EOS and DR. Micro-dose protocol provided enough quality to perform consistent measurement on Cobb angle.

Conclusions

Entrance-skin dose, effective dose and organ dose were significantly reduced in micro-dose x-ray. The effective dose of a single micro-dose x-ray (2.6 μSv) was less than a day of background radiation. As AIS patients require periodic x-ray follow up for surveillance of curve progression, clinical use of micro-dose x-ray system is beneficial for these young patients to reduce the intake of ionizing radiation.
  相似文献   
996.
To understand the olfactory mechanisms of Holotrichia parallela antennae in detecting volatile compounds in the environment, protein profiles of H. parallela antennae were analyzed using two‐dimensional electrophoresis followed by mass spectrometry and bioinformatics analyses. Approximately 1,100 protein spots in silver staining gel were detected. Quantitative image analysis revealed that in total 47 protein spots showed significant changes in different genders of adult antennae. Thirty‐five differentially expressed proteins were identified by Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI‐TOF/TOF) tandem mass spectrometer, among which 65.7% are involved in carbohydrate and energy metabolism, antioxidant system, transport, and amino acid/nucleotide metabolism. Some proteins identified here have not been reported previously in insect antennae. Identified male‐biased proteins included odorant‐binding protein 4, pheromone‐binding protein‐related protein 2, odorant‐binding protein 14, prophenoloxidase‐I, acyl‐CoA dehydrogenase, aldo‐keto reductase‐like, carbamoyl phosphate synthetase, etc. whereas some proteins are female biased, such as antennae‐rich cytochrome P450, aldehyde dehydrogenase, and putative glutamine synthetase. Alterations in the levels of some proteins were further confirmed by real time polymerase chain reaction (RT‐PCR). The proteomic resources displayed here are valuable for the discovery of proteins from H. parallela antennae.  相似文献   
997.
Autophagy is not only involved in development, but also has been proved to attend immune response against invading pathogens. Autophagy protein 5 (ATG5) is an important autophagic protein, which plays a crucial role in autophagosome elongation. Although ATG5 has been well studied in mammal, yeast, and Drosophila, little is known about ATG5 in lepidopteran insects. We cloned putative SeAtg5 gene from Spodoptera exigua larvae by the rapid amplification of cDNA ends method, and its characteristics and the influences of multiple exogenous factors on its expression levels were then investigated. The results showed that the putative S. exigua SeATG5 protein is highly homologous to other insect ATG5 proteins, which has a conserved Pfm domain and multiple phosphorylation sites. Next, fluorescence microscope observation showed that mCherry‐SeATG5 was distributed in both nucleus and cytoplasm of Spodoptera litura Sl‐HP cells and partially co‐localized with BmATG6‐GFP, but it almost has no significant co‐localization with GFP‐HaATG8. Then, the Western blot analysis demonstrated that GFP‐SeATG5 conjugated with ATG12. Moreover, real‐time PCR revealed that its expression levels significantly increased at the initiation of pupation and the stage of adult. In addition, the expression levels of SeAtg5 can be enhanced by the starvation, UV radiation, and infection of baculovirus and bacterium. However, the expression levels of SeAtg5 decreased at 24 h post treatments in all these treatments except in starvation. These results suggested that SeATG5 might be involved in response of S. exigua under various stress conditions.  相似文献   
998.
d ‐Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl‐tRNA synthetases (aaRSs), and this strategy might be applicable to d ‐amino acids. Several aaRSs can aminoacylate their tRNA with a d ‐amino acid; of these, tyrosyl‐tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its d ‐Tyr binding further, relative to l ‐Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl‐adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain l ‐Tyr/d ‐Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge‐altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards d ‐Tyr; one of these has an inverted stereospecificity, with a large preference for d ‐Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled. Proteins 2016; 84:240–253. © 2015 Wiley Periodicals, Inc.  相似文献   
999.
Kir2.1 (also known as IRK1) plays key roles in regulation of resting membrane potential and cell excitability. To achieve its physiological roles, Kir2.1 performs a series of conformational transition, named as gating. However, the structural basis of gating is still obscure. Here, we combined site‐directed mutation, two‐electrode voltage clamp with molecular dynamics simulations and determined that H221 regulates the gating process of Kir2.1 by involving a weak interaction network. Our data show that the H221R mutant accelerates the rundown kinetics and decelerates the reactivation kinetics of Kir2.1. Compared with the WT channel, the H221R mutation strengthens the interaction between the CD‐ and G‐loops (E303‐R221) which stabilizes the close state of the G‐loop gate and weakens the interactions between C‐linker and CD‐loop (R221‐R189) and the adjacent G‐loops (E303‐R312) which destabilizes the open state of G‐loop gate. Our data indicate that the three pairs of interactions (E303‐H221, H221‐R189 and E303‐R312) precisely regulate the G‐loop gate by controlling the conformation of G‐loop. Proteins 2016; 84:1929–1937. © 2016 Wiley Periodicals, Inc.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号